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: SPREN KIER CHRISTENSEN. Linear Stochastic Differential
BEquations on the Dual of a Countably Hilbert Nuclear Space
, With Applications to Neurophysiology. (Under the direction
; - / of Gopinath Kallianpur.)

") Properties of the Ornstein-Uhlenbeck on the dual of a

4 nuclear space are derived; stationarity and existence of
unique invariant measure is proved, Radon-Nikodym derivative
exhibited and the OU process is investigated for flicker

! noise.

Existence and uniqueness of solutions to linear stochastic
differential egquations on the dual of a nuclear space is

Y established, ana general conditions for the weak convergence
on Skorohod space of solutions are given. Moreover,
solutions are shown to be CADLAG semimartingales (for

appropriate initial conditions).

. The results are applicable to solving stochastic partial
differential eguations.

Finally, the results are applied to giving a rigorous
representation and solution of models in neurophysiology as

well as to deriving explicit results for the weak

convergence of these solutions. C:vam———-
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INTRODUCTION AND MOTIVATION

Within the last six years a number of publications
concerning Shs on the dual of a nuclear space have
appeared. In a series of these articles [10), [11], [12in
K. Itd has investigated special SDEs on the spaces

¢' (= gspace of all tempered distributions) and D (= space
of all distributions), and other authors have studied
particular SDEs on more general dual nuclear spaces
including Y. Miyahara (23], and G. Kallianpur & R. Wolpert
(141. |

Apart from its appealing probabilistic aspects research in
this area has been stimulated by applications to such
diverse fields as infinite particle systems in statistical
mechanics (Holley and Stroock, [8]), chemical reaction

kinetics (P. Kotelenez, (17]) and, most recently, to
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neurophysiology (G. Kallianpur & R. Wolpert, (141, (15]).

The primary motivation for studying SDEs on the dual of a
‘nuclear space comes from the desire to solve stochastic
partial differential equations (SPDEs). Here, we shall

restrict attention to linear SPDEs.

Just as in the case of classical partial differential
equations there are basically two different approaches to

this problem:

I: Given a suitable partial differential operator (PDO)

D in 4 dimensions and a Wiener process W, o indexed by
’

time t > 0 and spatial points x € rd

d

» find a process V

(indexed by t > 0 and x € R™) such that

avit,x) = DV(t,x)dt + dHt
' X

V(0,x) = Vo (X)

The main problem with this approach is that even for a
very simple D a solution of this form may not exist (take
for example d = 2 and D = - I; see J.B. Walsh [29]

section 10).

Therefore, inspired by the development of classical PDE

theory, one may try to look for generalized solutions

instead:




IRENENENN

‘here is to solve the following problems (see Appendix for

II; Given a suitable PDO D, a space § of "test
functions™ and a §’—valued Wiener process W (to be

defined), find a §’—valued process n-= such that

(Medeso
dN.[$) = N, (Dlat + aw [¢]

| veéeld
Nolé) = x14)

-Countably Hilbert nuclear spaces (see Appendix) were
introduced by Gel'fand as generalizations of the Schwartz
space 3126) and therefore seem appropriate as a choice

for 9.

Perhaps, one nay wonder if it is not sufficient, for all
practical purposes, to consider the case § = 9.
However, as pointed out in [14]), this is far from the
case; even in applications (such as neurophysiology, where
a suitable § may be a space of infinitely differentiable
functions on a compact Riemannian manifold) there is no
guarantee that the relevant space of test functions can be

accomodated as a subspace of 5?ld).
Until now, no general theory has been developed for
stochastic partial differential equations on the dual of a

countably Hilbert nuclear space. Our primary objective

terminology):
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Let §<> H<>§’ be a rigged Hilbert space. Let A : § > §

be linear and continuous. Let M = (M
2

t)ty0 e @ §'—valued

L°—gemimartingale (to be defined) and let Q be a

¢’ —valued random variable.
i) Give conditions on A assuring that the SDE on §'
ds, = A'§.dt + am; 50 = N
has a unique solution.

ii) The solution is, of course, a process on §’. But
¢’ = qzoﬁ_q, and hence it is also relevant to ask whether

for some g > 0 e‘ﬁ_q for all t € [0,m) or at least all
t € {0,T] for some T > 0.

iii) Investigate the weak convergence of solutions; i.e.
loosely speaking, if the noise and the initial condition
converge weakly then does the solution also converge

weakly ?

Chapter III, which is the main chapter, is devoted to the
solution of these problems. In chapter 1V we address our
second objective which is to suggest a new approach to
modelling neuronal behaviour via §’—valued SDEs, and to
illustrate how the weak convergence result from chapter

III can be useful in the context of modelling in

neurophysiology.




Special examples of solutions to one particular class of
$’~valued SDEs, namely the infinite—dimensional
Ornstein—Uhlenbeck equations, have been subject to study
. by several authors ([23),[14),(8]) and [29])), and therefore
we shall commence by presenting a treatment of some of the
properties of the general Ornstein-Uhlenbeck process on

r ®’ (chapter II).

For the convenience of the reader we incl:ide an Appendix

. presenting a definition and some basic properties of

* countably Hilbert nuclear spaces.
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: CHAPTER II :

{‘ PROPERTIES OF THE (’'—VALUED ORNSTEIN—UHLENBECK PROCESS

A

A A

In this chapter we shall investigate some of the

properties of the Ornstein-—Uhlenbeck process on the dual -
of a countably Hilbert nuclear space (see Appendix for

definition). Our interest in this particular process is

aroused mainly by a paper by Miyahara [23] and by its

recent applications in neurophysiology [14], [29].

However, the literature so far has dealt only with

particular examples of these Ornstein-—Uhlenbeck

g

processes, and therefore a treatment of the general case
seems appropriate. We shall discuss the issues of

stationarity, absolute continuity of the transition

L SESENENE N NG

measure wrt. to the invariant measure; and flicker noise.

However, first we must introduce some terminology:




Let H be a real separable Hilbert space and let L be a
" densely defined positive closed selfadjoint linear

operator on H satisfying:

-
. Ali Jr; >0 : (I+ L) ! is Hilbert-Schmidt on H.

Throughout the present chapter § will denote the countably
Hilbert nuclear space generated by (I + L) (see Appendix)

and §’ will denote the strong dual of § while

' PRIt

(§r3<...>)rel denotes the associated Hilbert chain.
; Let m € ' and let Q : §x§ > R be a strictly positive
: continuous bilinear map. By the Kernel theorem for nuclear
'; spaces we ha-.e
]
A2 3r2.>.0392>0 VvV é0e9:
- Im(oImIB) + Qd, 02| < 0,000 NIl
. 2
- $’—valued random variables and stochastic processes are
- defined in Appendix.
% REELNLTION
-,
J:.
\ A §’'-valued process W = (We)y,o (defined on some
. probability space) is called a §'—va1ued Wiener process
7 with parameters m and Q iff
-

AT IS P _—»., -_p. R TS O DU TR R T TP SR
UV ACRAS) SRS .

o
L IR
- -
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(i) vVéed: W [$) is a Gaussian process with mean

tm($] and covariance Cov(W (41, W [$]) =t s Qé,$)

<

f (ii) t > thél is continuous with probability one for
Y

" each ¢ € §.

N m
-

If W is a §’'—valued Wiener process then (i) implies that

w, —w, AL ow W for any t, > t, > t, > t; > 0
4 3 2 1

i.e. a §’'—-valued Wiener process has independent

increments.

1l.l.). IHEOREM )

Let m and Q be as above. Then there exists a probability
space (0,F,P) and a §’~valued Wiener process W on
(0,F,P) with parameters m and Q. In fact, if q > r, +r,
then

we cuo.oo),i_q) P-a.s,. -

—=The theorem was proved by K. It8 [12] for the case m = 0

and § = Y(R), whereas V. Perez—Abreu [24]) has proved the

AR RON

result for m = 0 and any § generated in the manner
considered here. The necessary alterations of the proof

when m ¥ 0 are straight forward and therefore omitted.
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In the sequel we take all random variables and processes
to be defined on (0 ,P,P) which we assume to be complete.
Let 1) be a §'~valued random variable and let

Y = (MW 2 0< 8 < tIV(P-null sets}; t > 0

where W is a §’~valued Wiener process with parameters m

and Q.

Recall that a real stochastic process X is called

progressively measurable wrt. (‘ft)t>° iff
(i) xt is _‘%_-measurable vVt>o
and

(ii) Vt>0: (s,w) > xs(w); s € [0,t]) is
8(R)/B(LO,t])x ‘!t—measurable.

The assumptions on L imply that L < § and that L is
continuous on § (see proposition III.1.13.). Let L’ denote
the adjoint of L considered as a continuous linear

operator on §.
DEEINITION

A §’-valued stochastic process §= (§.), , , is a

solution to the SDE on §’ :




e

P A A

PR R A R N

Al

(e

10
(1) as, = -L'Stdt +aW.; F = Iz
iff
(2) vVéed: (§t[¢l)tzo is progressively measurable

wrt. (4 ). yq-

and

(3 P(F 041 = NI + [E 5 1-Lidlas + W 141,
Véedrl=1 WV t)o.

Moreover, § is the unique solution iff for any other

9’ —valued process (ft)t>0 satisfying (2) and (3) we have
P(§, =%, V t20}=1.

Al and selfadjointness of L on H imply the existence of a
CONS {¢j j € WM} in H consisting of eigenvectors of L;
L¢j = )‘j'bj' where 0 < \1 < \2 £ ... with )‘n > oo as n ->
oo, and where ¢j e Q V jJ € B; see Appendix. Further, -L
is dissipative selfadjoint and closed on H and hence —L

generates a selfadjoint contraction semigroup {'1‘t : t > 0)

on H and
Tt*j = epr-xjt)¢j vV jen.

For each j € W let gj denote the unigue solution to the
real valued SDE

‘ o ‘1,) ‘-\ _"_ ST S ""d‘:’ :".:‘.I'."-{:’:.. et :,-:...:;..-..:_. . ._: "~ '.D.:.'\'.":.‘

4.'1 - R Y n~
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, agl - -xjggat + AW 4]
| (4)

53 = R4y,

i.e..gz is the one—dimensional Ornstein—Uhlenbeck process

‘ -\t -A\;(t—8)

; s LY t TN

(5) S = e l'([¢jl + IO e m[¢jlds +
- -A\;(t~-8)

[g e 3 dwg, where

: -

‘ L Wsld»j] smléjl.

5 Suppose that ]'2 satisfies

] A 3r;20:EIQNL, <

-, Then the equation (1) has a unique solution § = (gt)t>0
i given by

: ®
e (6) §¢ = ;L §2_¢j.

Ly =]

the series converging uniformly on [0,T] in the

{ Q_q—topology (P-a.s.) for any T > 0 and any

q > (rl + rzwr3, where

TN A

NN e LKA
A ~ \"’- *.. .-$ \*\' LSRNy




32 is the solution to (4).

Moreover, § has the strict Markov property; i.e. f?; is
conditionally independent of 6{58 : 8 > t) given {St}. .

and ¥ satisfies

e C([O.m)&_q) V a2 (r; +1, r,.

—The theorem was proved by G. Kallianpur and R. Wolpert
in [14]). Their proof for the case where H = Lz(*,l.P) for

a e—finite measure space (k,8,7) and where

Q¢, ) = J“"x a2¢(x)¢(x)u(dadx) .

for some 6~finite measure p on Rxf, extends without
change to any real sepafable Hilbert space H and any

continuous bilinear operator Q on §.
If §t is given by (6), then

T ldy0 =§5) (P-as) viewm,

i.e. §t[¢j] is a one—~dimensional Ornstein-Uhlenbeck
process. Therefore, and because of the formal similarity
between (1) and a one—dimensional Ornstein-Uhlenbeck
equation, we shall call (ft)gzo a §’'—valued

Ornstein—-Uhlenbeck process with parameters m,Q and L.
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Before proceeding to the investigation of the properties

of ft' we need two more results:

Let N € N and let Py denote the orthogonal projection
onto span{¢j : 3 € {l,...,N}) in Lq; where

N
q 2 (r; + rylvry. Let (X,) = (P

t>0 wSt’e > o°
Then xV is a i_q valued process. Define, for any

stochastic processes Y = (Yt)tzo

- _
Y = (Yt)te[o,'r]' where T > 0.

Then xV'T € ctio,71,§_) (P-a.s.) V T >0 and we

have:

1l.l.d. RROFUSITION

VT>0:xMT axy ¥T on cero,71,§_).
N q

PROOF :
By theorem 1I.1.2., for each T > 0 we have

N,T T
sup ||x -E . l_y =——> 0 (P-a.s.),
oct<T =t Sel-a 333

N,T

i.e. X converges P—a.s. to gT in the topology of

C(IO.TI.LQ). Hence

N,T T
£xMTyap ——o [ £¢ Tyar
kn N> b

L DS Y] . ot
'.w L t. ‘
LY 2 SN o e
S °,

2 ¥, b

T o T
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for any bounded continuous f : C([O.Tl.ﬁ_q) -> R, by the
* m.

Recall from Appendix that if ¢, € § then

(2]

<, 9> = ;}: P>, <Bob>, (14 xj>2‘ ¥V ren,
=]

Note also that, by construction of §, (I + L)* is defined

on § for any r € R. By selfadjointness of (I + L) on

§° = H we have for any ¢, € § and any r,p € R :
- < (I + L) P, (1 + L)7P >, -
@
N r—-p : r—p 2p . .
_ /. < (I + L) ¢,¢j>° < (I + L) ¢,¢j>° (I + \j)
3 j=1
}
" @
N <h, (1 + )FP b0 W (I + LTTP > (4 \j>2" -
=
o)
Z <¢,¢j>° <¢l,4»j>o 1+ xj)zr = <> .
)=1
1l.l.4. IHEQREM
; For any r,p € R there is a unique extension Fg of

I (I + L)*™P to an isometric isomorphism 9 - §p'

T
.....

- v .t - . e cmn R DR RS SRS MR SN S RN S ML AT . S0 SRTL NI P \
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Let x € § . and choose {§_ : n € W} = § such that
ix -9 1, > 0.

A A

Then ("n)nel is a Cauchy sequence in ir' Now

0o, — 02 =<v, - 9,0, -0 =
<A+ LR, -9, T TP, -0 >,

so ((I + L)T~P ?.)hen 18 Cauchy in @

P

depend on th: approximating sequence {¢n}nell° Indeeqd,
X be another sequence in § such that

ix - Xl ——=> 0. Let y denote the limit of
n->m

r—p
(I +L) 1, in ip. Then
- - r-p
R4 yup5 i - (I +1L) "n"p*
e r—
f(I + L) P(tyn—;}’n)up+||y-(1+m p/)(nllp

Now, £ = (I + L)""P g )l ana |y - (x+ ™ Py )

both tend to zero as n - o by definition and

Let % denote its limit in Qp. We claim that £ does not
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r—-p 2 o 2 _ _
b+ Pay, —xIg = 18, = Al —5> 0

since §, > x and 4, > x in § as n > .
Hence [|® - yllp = 0, showing that ® is independent of the

approximating seguence ¢n - x in §r' Therefore, the

prescription

§ 2 x > FPx := 2 = 1im (1 + WPy in@
r r n>w n P

defines a (linear) map Fg : 9, > Qp. Moreover,

[ex + L)E7P S0, = IRl == 0
n->a

but

fex + L)"7P Pollp = 09,10, -'--> (EY

so x| = lellp and hence Fg is isometric.

Since Fg is obviously an extension of (I + )P, it only

remains to show that Ps is surjective:

Letyeﬁ.Thenx-Fyeﬁ and1fy———>y1n§

P oo

where y € §, we have x = 1lim (I + L)P~T Yy, in Qr'
n->w

Further, with X, = (I + L)P~F Y, We have
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r.-—1
p)

(I + L)F"P X, =Yg Hence y = ng, and Fg = (F

Alag. SIATIONARITY AND ARSOLUIE CONIINUIIX

In this section we shall show the existence of a unique
Gaussian invariant measure for equation (1) and
investigate the absolute continuity of the transition

measure of the Markov process wrt. the invariant measure.

For convenience we shall assume that \1 > 0. Since

\1 < \2 € ««. this implies that \j >0V 1i.

We begin by showing that the series
D ©
N\ -1

is absolutely convergent for any é,¥ € §:

Let q > r, +r,

8

L + N Th <bid> o <Bid>, Qtdydy) |

Jrk=1

-
~

a0

<y @D b, By Qb
jvk’l
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N @®
- -1
;: < %_ VR LT RN RN T BT
. jok=1
.
o a
- = Y " kb <Bib> | 0,01 + ) )y 21+ 2y 2
o / 1 19320 Vel 8, j K
:: jpk'l
o
-1
= 2_ 0,020 T <> (1 + AT |1<Bb> (1 + W0
jo k=1
r,—q r,=q

| 2 2 :
3 (1 + \J) (1 + \k)
o
'
- (by Cauchy—Schwartz and choice of q)
2 -2r
' -1 2 2,172 \ 1

< : +
: < 820 “(hel NNl /. (1 + 3y
=1
- -1 :
. = 0,0,(2)\) |H>||q||lll||q < , since
. %’- —2r1
o 91 t= (1 + )‘j) < o by Al.
: &
]
’ heri.ce
= e
. -1
: |5>_1 L SV VO R M R T T T Y
, = k=

<00, bl M0l Vv ébed
. and since § is dense in ﬁq a continuous bilinear map B may
% be defined on J by
::-'.j .:. .‘_-,:--_3:_::_:.-; ~;_,_ e ..; A e L L A e T e e e e L -

" o R R SRS,




B(,¥) := \ 2_ (\j + \k)'l <¢,¢j>o <¢,¢k>° Q(éj.¢k):

¥ el

Define a continuous linear map S : Q_q -> Lq by requiring

’0
¢
L < Su,v>__q = B(Fiqu,ngv), V u,v e i_q.
a Then S is positive, selfadjoint and nuclear with
\ -1 -q -q
T = + . + . + .
r(s) lel_l O + %) Q(¢J.¢k)(1 Ay T+ )
J: =

Define a continuous linear map A : § > § by

Q0
Ab = Z N Hebibp b5
3=

Then, for any r > 0,

WA, < \T ol

and hence A extends to a continuous linear map: § > §_

for every r > 0.
Now, the mapping

g
§_q 3y = m[/\F_qy]

defines a continuous linear functional on Q_q and

..................

......
- « e
VR R
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therefore there is m € Q—q such that

: q e ;
2 mIAFZ vyl = <m,y>_, Vvyed .

Define, for ¢ € Qq’
cq(¢) = exp(im[{A$]l - 1/2B($,$)).

Since (by theorem II.1.4) any ¢ € Qq has the form

¢ = F3 y for a unique y € ﬁ_q we have

q

Cc
q(y)

exp(hnbNFqu] - 1/2B(FS y,FE y))

q q

exp(i<ﬁ,y>_q - 1/2<Sy,y>_q);

i.e. Cq(y) is the characteristic functional of the
Gaussian measure on Q_q with mean functional m and
covariance operator S. We shall denote this measure by

V= N__(m,S).

. q

-In the sequel, whenever we talk about initial conditions

for SDE's on Q' we shall tacitly assume that they satisfy -

A3.
REEINITION:

A Borel measure p on §’ is called an invariant measure for

the SDE on §’




e n e L a L an e am e an g Do b

dg, = — L'g dt + dw,

(7)

So= M

iff, whenever N has distribution p and ]}LL{WS :

P( t € A) = u(A)

this way.

IHEOREM 1l.l.l.

PROOF

.......................

. CURSRA
*et e .

-----
. . e

VAaAes

r >0, 8(3’) relativized to §__

Therefore, any Borel measure y on Q_r can be extended to

Let ¢ = r; + r,. Then ) = N_

invariant measure then

(@)

u*(A) = p(ANY ); A e 8(P").

q

M(A) =¥V(A) WV A€ 8.

V t > 0.

is equal to 8(3__).

.....

(m,S) is an invariant

measure for equation (7). Moreover, if u is any other

.....

.............................
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s > 0},

-Note that since §’ is the strict inductive limit of §_ ;

a Borel measure on Q' by identifying p with p* defined by

Henceforth we shall regard measures on §—r as extended in

BRI
s Ta M e
52l ek ankand
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Let I} be independent of (W, : s > 0} and have
distribution N_q(E,S).

: Then Ell]?lliq < o, so (7) has a unique solution by
theorem I1.1.2 given by

v Let N € N. The R'—valued process YE = (§t,...,gg)'
g satisfies

N
dy, = LY. dt + az,

(8)

\ A A‘-A‘:‘ i

Yo = (Ndy)..., NigD’

where

AR AN

(Ln)ij = \jéij: i'j = 1,.-.'N and

L Y T )
«8's & 4 @ V

Z

N (wt[¢11, cee .wthl)

N i.e. Y: is given by

N N t N
L= StYo + , S az

Y o t—-g 't

=\t
where {sg}ij -e 3 éij; Joi = 1,...,N.

8.
N )

4

Hence Y: is a Gaussian process, and a computation will

' F S

---------

TR AR AL SRR CTE
."'-'.:-‘. -‘.'v'._\'.‘;; y"\‘.\( -
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verify that

BY: = (m[A¢ll geve pm[A¢N] )’
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¥V t >0 and

N .

Let Fy : §-q - R denote the map given by

FN(x) = (xl,...,xu)'; where

-1,,N

N
N_\ ]
(recall from page 13 that X, /. t¢j'
I=1

Fix t > 0. Let C: denote the characteristic function of

Y

i.e.
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: ) 3
N Cel¥yreeeryy) = exp(iL yjm[/\éjl
I=1
:: i ROP
A - - Y.Y B( v )) -
- 2, b T3 Pt
Jo K=
§ .
. @
, Let ¢ € %; ¢$ = Z- <¢,¢j>o¢j (converging in %).
1 j,l
'. Then the characteristic functional of x‘: (evaluated at ¢)
:E is
3 &) = Vi<, 9> b b> )
: t 1 AR AAS RE- LA A K-
- N
.':5 = exp(i..\L <¢'¢j>°m[/\¢j] i
< )=l
T 1 N
\

: - ol <¢,¢j>o<¢,¢k>om¢j.¢k))
5 k;)=1

- exp(im[/\L <¢,¢j>°¢j]
: j=1
,‘ L & N
- - — \
: 28( /. <¢,¢j>o 30/ <¢,¢k>°¢k))
:: j=1 k=]
<
<

N

: \
A N -_— 4
- ow, él <¢,¢j>°¢j N_); é in §q an
o J
ot




e
v e s

since B and m A are continuous on §q we get

' 1l
lim KJ($) = K () = exp(imlA$] — —B($,$))
N=>m® 2

i.e. Kt is the characteristic functional of the measure

V= N__(m,8) (c.f. page 20).

q

Now, lemma II.l.3 implies that

XN aa=> ¥ for each t > 0.
t t -
N>

2 must converge to the characteristic functional of

EE' i.e.

Hence K

K, ($) = Eexpii% [4])

But Kt was just shown to be equal to the characteristic

functional of V.

Hence

P(F. eA) =Vv(a) VWV aes@),

concluding the existence part.

Next let p be an invariant measure for equation (7). Let

Q have distribution u and be independent of (W, : s > 0}.

By theorem 11.1.2 there is q > r; + r, such that the

2
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solution to (7) satisfies e ¥V t> 0. Let P
t t -q Z N

denote the orthogonal projection onto

span{¢j :t J=1,...,8) in §__. Let Py be as in the first

q
part of the proof and let YE denote the unique solution to

(8), where Q now has distribution p. Then, for any

B € I(IN), we have

weprgler lm) =pr P, €B) V t>0

=P(Yy €B) VWV t>0.

Hence
M ,pgl. FEI is an invariant measure for the ordinary SDE

(8). But the unique invariant measure for this equation is

the Gaussian measure VN on RN with mean

(mIA$;1,...,m[Aéy]l)’ and covariance matrix

(E)ij = B(¢i'¢j)' i,j‘l,...,N.
Hence

" op;;l- pgl(a) =Vg(B)V B € s(’Y).

. o=l -1
But'VN =Y P . FN

N for each N € N.

Since N was érbitrary, we get

pOP;1°F;1(B) - P;lo 3;1(5) pesmY)y Vv Nen.
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But

SAcP . :InemInesm™) : a=rpilorilim)
= n@_q). so u(A) =~(A) VY A € s@_q).

But p(C) = MCOI_q) Vv Cc e 8@

because, by invariance property, p(C) = P(f£ € C) for any
t>0and¥, e §-q P-a.s. V t.

Hence, for any C € 8($’)
u(C) = p(cnN@ 7 =\’(C”Lq’ =
(CNJ_ (1 4p,)) =V
1 "2
(note that q > r; + r, and that CI\§_q € 8(9’), so that
(cn Q_q) =v(cn§_(r1+r2)) =V (C),
by the convention of identifying V with its extension to

8(g’')).

We shall ‘not give a general and thorough discussion of

stationary solutions to §’'—valued SDE's. The following

considerations will suffice for our purpose:
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For an ordinary Ornstein—Uhlenbeck SDE, starting at an
initial condition whose distribution is equal to the
invariant measure for that equation, produces a stationary
solution in the sense of K. It8, [13]). This stationary
solution is defined for all t € R and is a wide sense
stationary process xt which has distribution equal to the

invariant measure for every t € R.

We shall now see that also the §’—valued Ornstein-

Uhlenbeck process can be extended to a Q'—valued process
5t defined for all t € R, which is wide sense stationary
and whose distribution is equal to the invariant measure

(for all t € R).

For each N € N let YE = (32)§=1 denote the stationary
solution to the SDE

ayV = - LNY':dt +dz.; t € R; i.e.

t7
3 -A\;(t—8)
t
72 = j—qo e dWs(¢jl; j=1,...,N
notice that if t > 0 then .

-A:t -A\s;(t-8)
32-e j{g+ ke 3 aw (4,1,

where

.S
43 Lo e 3 aW,(44] and




the joint distribution of (43,...,4%) is

(o]
u((m(¢11,....ml¢ul).{a(¢j.¢k)}).

@
Let N := Z—i?g‘bj. Then
J:

D
\ ), 2 2
Ejfl (4 My, =

a
;' (Bl by + (m[/\¢jl)2)(1 + \j)-zq <
=1

JZ (\I‘zv/\i'l)(owj.d»j) + (m[éj])z)(l + \j)-zq
=1
(by A2)

QO
N O —=2..-1 2 -2
le (N] Vv ’°2"¢j“z2‘1 + ) 1.

o)
- - -2r

z: (xlzv\111 62(1 + \j) 1 < @, by Al

i=1

and so

@
’21 (ig)zllﬂliq < ® P-a.s.
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Hence I} € I_q (P-a.s.) and El]’?ﬂiq < .

‘It now follows from theorem 1I.1.2 that

@
¥, &= j}:?gd;j (t > 0) is the unique solution to the
=]

$’—valued SDE

df, = — L'5.dt + dw,

-
(2 g
v
o

o= R

Moreover, the characteristic functional of 12 is

[Ad;1<hrd5>,

N

C(d) = 1lim exp[i

N->a =1

w
L

=

1l
- ;j ) <¢,¢j>o<¢,¢k>on(¢j,¢k) ]

1
= exp(im[/\¢j] - -2-B(¢.¢))

a0

where Qq > ¢ = }: <¢'¢j>o¢j

i=1

i.e. N has distribution V = N_q(E,S).

30
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A\:8
Since Nié,1 = 13-pe J M 4] View

Q is obviously independent of {ws : 8> 0}.

Now, let t € R. Then

z\ 3H2es2, -

j-l
o]
)2
PRI IR T
Jj=1
2 -t 2%.8
\ i(t j
L. (e I-—co e Q‘*jr¢j)ds
j=1
~\;(t-8) _
% @t '¢"—1"' + (-me H3a + \~

O v \Iz)eznﬂlgzu + \j)-zq

IA
18

© -1 =2 —2r)
= ) Orrdea sy < o.
i=1

Hence there is a nt € P with P(Ot) = ]

B T TR I R P TN A A e N NIRRT . PR SRR
AN AEACACIES R A A A AP S T
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! he.2)
. \ 3j 2 2
Y ) (42 () “’j“—q <o Vweuon,.
J=1
% Define
N
# @®
\ 43 A
] frwrdy if we o,
- i=1
3;(w)
0if we a,.

where ft is the unique solution to
- - ’
dgt = L §tdt + th

So = M

with ) ~ N_q(in',S) and rz_les

s > 0}).

REEINITION

A §’'-valued process X = (X, ) op i called (wide sense)

stationary iff

i) V é €@ : EX [4) does not depend on t.




ii)
(t-s,¢,¥), t>s € R.

11.2.2. THEQREM

PROOF :

Let ¢,¥ € §. Then,

Next,

ch({t[¢l.fs[¢l =

<brby> <> Covigd, 45

.........................................
........................
....................
.......

invariant measure for equation (7).

...................

for each t € R the distribution of fi is equal to the

......................
..............

c e
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v é,6€9: Cov(xtlél.xslvl) is a function of only

‘5- ({t)ten is a wide sense stationary process. Moreover,

......

......
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) Qo @
Y, —_ =\;(t—t 8) =)\, (s—t 8)
- A\ 3 k
| =) ) hbpochibo, e e IR
. ]'1 k=1
N o ®
~ \ N\
= > < > B( Yh,, (t—8)
: Z_L ¢¢]O¢¢k0¢¢k Jk
“ j=1 k=1
a
- -\Jh‘l
- e if u>0
where h., (u) :=
Ik —\klul
e if u < 0.
Since the series
- ©® @
2 N\
- /] /. <é, ¢j>°<¢ 1> Bl ,¢k)
j=1 k=1
X was shown earlier to be absolutely convergent, this
concludes the proof of the wide sense stationarity of ét’
By construction, for each t € R the joint distribution of
: (’ft,...fg) is Gaussian with mean (m[/\d>1],...,m[/\¢N]) and
‘ covariance matrix (i)i_j = B(d)i,tbj). Moreover, by
- definition of %t we have
- N
» 4= 1im ) 43s. (in ) P-a.s.
- % N> Ls ?t¢3 i'q
4 ]’1
Hence the characteristic functional for ‘ft is the limit as
f
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N
N->oo of the characteristic functional C, of \L f2¢j. But

N
cy#) = exp[ 1) mIAb I<hib, -
3=1
]
1/2 \L <¢,¢j>o<¢,¢k>oa(¢j,¢k)]

Hence

Bexp(i t[él) = lim Cy(¢$)
N>

= exp(im{A¢] — 1/2B($,9)).

Hence P(f, € .) =v(A) VY A€ Q_q where V = N_q(E,S) is

the invariant measure for equation (7).

1L.2.3, PROPOSITION

When L satisfies Al and (T, : t 2 0} denotes the

selfadjoint contraction semigroup on H generated by L then

(9) .9, <% Vr>20 Vt>0

(10) Tt|§ is nuclear V>0 VYV t>0.
r
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PROOF :

Fix r > 0. Let $ € § . Since § §, = H we have, for any

t>0
O TNt
Tt¢ = L_ e <¢'¢j>° ¢jp 80
J=1
L L\t
2 \ 2 2r
T éll2 = ) e 3 <brd>g (1 + %)
=1
2
< leéllz.

and since § is dense in §_this proves (9) and also shows
that Tt'@ is ||. llr—continuous. Hence we only need to show
r

that Tt has finite trace for each t > 0:

[
L]
fut

2rl =\:t
Fort)Ofixed.(1+\j) e J—)Oasj-)cn.

_)‘jt )

Hence e .

18

=Nt b
Since (e 3 . er) is the eigensystem for Tt|§ ’
r
j'r
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VMt
Trace('l‘th ) = /. e < .

s =1 ’

Next, we shall give necessary and sufficient conditions

. -
LR A

that the transition measure of the Markov process

£ = ‘§t’tgo be equivalent to the invariant measure

V= N_q(ﬁ,S).

Let P(t| ]'2) denote the transition measure of the Markov

process §. For any n in Q_q P(tll}) is a Gaussian measure

on §—q’

3l.2.4. IHEQOREM
Suppose that ‘1 > 0. Let ]‘2 be a ﬁ_q-—valued random
variable sucn that N} € Range(S).

Then, for any t > 0, P(t|)) and V are equivalent on Q_q
iff

e, ‘l‘

(11) = e Range(s?) and

W MM

A

(12) T{__(Range(sl)) Range(s}).

X
LIy

By proposition I1.2.3., T.§ c § WV r > 0 and we sav
that Ttlﬁr is .| —continuous. Hence Tt§ c@ana T, is

continuous on §. T¢ denotes the adjoint of T, considered
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as a continuous linear operator on §. It follows from
proposition II.2.2. that {§_ < §__ V r > 0 and that

T/ is nuclear V r > 0.
9

PROOF OF THEOREM II.2.4.:

Let t > 0. It is easily checked that P(tl]?) is a Gaussian
I3 ' - bong -
measure on Q_q with mean functional T{(} — m) + m and
covariance operator i't =8 - T{:ST::. Hence P(t| ]’2) and
are either equivalent or orthogonal. By the Feldman—Hajek
theorem (see H.H. Kuo [11]) theorem 3.4 page 125) they are

equivalent iff
(13) TN - e Range(s1/2)
(14) B, = sl/2(; — st)sl/z; where

(15) B, : Range(sl/z) > ﬁ_q is continuous and I - B,

is positive definite
(16) Bt is Hilbert-Schmidt.

Sufficiency of (11) and (12):

since N e R(S) and R(s}?) S R(s), (11) and (12) imply
(13).

Now, &E_=§ - 'rés'r;: and since

------------------------------
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1/2

) < Range(,sl/2

Té (Range (S ), we have

- /2,5 _ =1/ 2pscmra~1/2,a1/2
S TtSTe = S (I S TtSTts )S .

Define B, = s-l/,zT'ST's-l/z. Then B, is well defined on

t tTt
1/2) and I — B, is non-negative definite (because it

1/2

R(S

and S are positive definite) and

*

B, = E_.E

t tEer where

Et 1= Sl/z‘rt'__s-l/z, and E: denotes the Hilbert-—space

adjoint of E_ on Q_q.

Let {e : n € W) be a CONS in ﬁ_q consisting of

eigenvectors of S. Then

- ’
<Eten'en>-q <Tten'en>—q' so
X L]
\ N N
(17) /. <Eten'en>-—q / <Tten'en>-q
n=1 n=1

= Trace('rt'_.lg-q) < oo,

siance Téllq is nuclear. Moreover,

-\jt 1/2

1/2
B S/ 4y = e S ¢ Viem

-A\it
i.e. e 3 is an eigenvalue for E, for each j € W,

R e T,

A K K L] “-"\n -
S R SRS L LN

TR T T TS T
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Further, since

is a CONS in §—q' span{81/2¢j : J € m} is dense in

1/ 2). Hence there is a complete orthonormal system

1/2

(b:i : jen < sp:-.m{S]'/24>:i j € B} for R(S ) such that

e A jem
Etbj = e j Y 3 .

But then sup ﬂEtx“__ <1, where
x€eu q
U= (x e Rs1/2) ; ||x||_q < 1} and hence

1/2 . . . .
E. : RS > Q_q is a contraction, in particular
continuous. Since Bt = EtEt and I - Bt has already been
shown to be non-negative definite it follows that I - By
is positive definite.

By (17) Et has finite trace and thus Et is nuclear. Hence

B, = E:Et is nuclear, in particular Hilbert—Schmidt, and
continuous : R(s!) > 3_,- Hence (15) and (16) hold and
(14) is immediate from the definition of B.. Thus (11) and
(12) are sufficient for equivalence of P(tll?) and .

Necessity of (1l1) and (12):
AR IR GIRT . T A Lo L e L e e R N A T i e T e et e
:_.‘..::.,4\. \\.} \.‘.X\ '\ *. \).' ' \’ _. ir... ’-_' S’ - :N: '_‘.-.\ WHLAEY ..“..\. . e _-*\ X (8 R DTV
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g

: If P(t|N) and ¥ are equivalent then (13) through (16)
’ hold. (14) gives

. — mremr o 125 _ 1/2,

: « gl/25 §1/2
2 (18)  TIST! = s/ “B 5%,

&

' Since 'l‘t'__S]'/2 and 81/2 are positive definite, Bt is

2 positive definite. Hence we may write B, = DtDt for some
positive definite D : r(s/2) > §-q' But then (since T

% is easily seen to be selfadjoint on Qq and hence Té is

selfadjoint on i_q) (18) gives:

v el/2 1/2.% _ o1/2.% - 1/2 % #
. (Tes™ “r(rgs™ ) (s™ “p)1(s™ ‘D)
N
',
b
; aqd consequently
o
/2, _ 1/2,.*
: R(T{S™ ) = R(S™/ “D)
- (see e.g. C.R. Baker (1], Corollary 1, page RR2) which
implies that 7/R(s)/?) c r(s}/?), 1.e. (12) holds. But
S since I} € R(S) and R(S) cR(s*). (11) now follows from

(14) and (15).

In the general case the formula for the Radon—Nikodym
- derivative of P(tll}) wrt. V is impractical, but when

Q(O,.Ok) = 0 whenever j ¥ k the coordinate processes

.,\3\ S A RNy
\ -.“' "'\ AN “-s.s N \' \=h "\." YOS ‘_-.:4

e e o T A Q0 o T o 5
AR % o
L]
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§t[¢jl are independent and S and T{ have the same
eigenvectors. In this case a very handy expression for the
Radon-Nikodym derivative is available. In addition the
case Q(¢j.¢k) = 0 when j # k is of interest in the context
of [23] and [29].
11.2.5, SOROLLARY
Suppose that \; > 0, Q(¢j,¢k) =0 if j # k and that
m= 0. If T satisfies (12) and ) € R(S) c§_q then
ar(t| M) @
—_— = —2)\;t _
¥ =T (1 = e 3,71/2
R A
J=1
-2)\ N -2Xot
-2 i -1 j 2 2

- 6. - . ) -

exp[ ij j (1 e ) (e (]‘2:l + yj)
_xjt

2e I?jyj):l; where
62 = d(¢.,¢.) and
] R |
I'z and y € R(S) are given by

& &

\ -
= [ Mybyandy= ) vyyéy

i=1 i=1
both converging in §—q‘

—The proof is a straight forward appl.cation of theorem
3.3 in Kuo [18]), theorem 16.2 page 83 in Skorohod [25] and
N L R P AN A AT S O A AR A TATIAC I e AR RN e T
L Nl e i v e ';":'-"\;"-: B CSAS LT TN A P ST

ML oL * Yol ol geip Seia diaia ' il ek Ju.CimmiJiact Sl Cttniv nitgt it ialiC i o AT
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the formula

dp(tlrp dp(tlrp dP(t|0)
av dP(t|0) av

We shall conclude this section by stating a simple

sufficient condition for equivalence for the case

Qs ,b) = éjks*';.’:

11.2.6, EROPOSITION

Suppose that \1 > 0 and let Q € R(S). If Q has the form

' : r
Q(¢j,¢k) = 8j£€§' for some €§ < 92(1 + \j) 2

then (1l1) and (12) are satisfied if

(a) Jry,>03N em3ic >0 :
"’>C(1+)‘)_’:4 Y >N
3 2 3 72 %
and
%2
-1 -2 2
(b) L)‘j j(m[¢j]) < .
J=1
REMARK

In {23]) Miyahara considers the following set—up:
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e

Let H = Lz([o.rrl) and let w = V=A: A being the Laplace
operator with Neumann boundary conditions at 0 and .

Then the eigensystem of ; is ((Oj,j) : 3j=0,1,2,...} where

RO

T2 j¢ y =0

#5000 = 2 .
» — Cosjx if § > 1.
T 3 ) 2

Let H = {h eH: <h,¢°>H = 0}. Then w is strictly positive
- on E and Miyahara considers the countably Hilbert nuclear

g space

T=¢et: [widll, <o V ~e€Rr).
H

\ PRRNR RS

(4

From a cylindrical Brownian motion on H Miyahara then

constructs a Q'—valued Wiener process B, with parameters

t
m=0 and Q(¢,§) = <¢,9>,; ¢,¥ € @, and proceeds to study

the SDE on §':
t dxt,= - thdt + dBt.

N He shows that there is a unique invariant measure for this
equation, and, given any initial condition ne §_§, the

. transition probability measure of xt given Q is always

equivalent to the invariant measure. Since m = 0 and

Q(¢,¥) = <14,¥>, in Miyahara's case, (a) and (b) of

proposition 11.2.6. are satisfied and thus explain why no

s e e A A

extra assumptions are needed to ensure the equivalence in

+
i B ) . . - L) - LI'e ) . - A I T U ST ) - -
L AT TSI A T A S R R gt e A o
e e o e Te e e L% N LY % '-."- “a gt e _\-.'- .
5"&\"‘%’\’ .r‘.’.(-...-\.'\.-\. .‘-'.‘J'.. I
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Miyahara's case. Moreover, )‘j = j and j > 1 (after
defining §) and so Miyahara's results may be derived from

ours.

Ot i S
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I1.3. FPLICKER NOISE

We shall now investigate the asymptotic behaviour of the
spectral density of the process ]’2:[¢], where ]?: is the

stationary §’—valued Ornstein—Uhlenbeck process

a * _ ’ * * -—
Ne = -L'Ne + W N, N_ (@,8).

We recall that if X is a real—valued wide-—sense
stationary process with covariance function
T(h) = covar (xt,xt+h) then the spectral density P of X

is simply the Fourier transform of T .
pev) = 2m)~V2 @ Tinrel'Man.

Following J.B. Walsh [29] we shall say that X is a flicker

noise iff

lim v?2 PRI = @
y=>@®

-
and for € (0,2) we shall say that X is an £ -—noise,

iff for some c € (0,m),
lim v‘(f)(a?) = C.
V>

I1.3.1. THEOREM

Suppose that \1>0. Let ¢ € §. Let F denote the spectral

ORI R St Jadt IR T e I e i e e I N R L N L Y L I LA ‘.“.‘..‘..‘i.‘_\ﬁ

......

......... DA A A ARSI

- * D
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density of Q:[M. Then

0 if ~e (0,2)
lim V'(P(v) -
~=->a0 _1/2
(2 ) Q(,d) if x= 2.

* -
So ]?.[é] is neither a flicker nor an f '(—noise.

PROOF :

o)

-\t _ -\t

l}:[ﬂ = z [e J ]’20[4)).] + m[¢j]\j1(1—e 37

i=1

-\;(t=8) .

+ sg e dwgwj]] <¢,<|>j>H where
Q;[¢jl = N(\;lm[¢j],3(¢j,¢j)) and hence
Covar(]‘z:[¢].12:_+h[¢]) =

-\;h,

® ® e "] ; h>0
\ O\
/ /. <¢.¢j>H <$rd >y B(¢j.¢k)
j=1 k=1

e—)‘klhl; h<0

The series

/18
18

<¢'¢j>ﬁ <$rd >y B(¢j.¢_k)

"\

wl

N
-
»

]

1

is absolutely convergent for any ¢ € § and therefore




POy = [°_°_w 211" 2covar (n2141, NELén ™ an

=\:h+ivh
J dh +

D ®
) ) <hibpy <bibog Blds b (D e

j=1 k=1
=\ [h]+ivh -
[Poe * dh). (21 )~ 1/2
o ©
= )\ \ -1/2
= 'leL]_<¢'¢j>H <, >y B(¢j.¢k)(2zr)
J= =
-1 1
( — + —)
-)\jﬂ.\) )\k+1\7
o ®©
=\ \ -1/2
(19) le/_1<4>,‘1>J.>H <bré >y B(¢j,¢k)(2rr)
J'—' =
)‘k-i Ao+i
(xzwz M T R
k 3

For ~ € (0,21,

A, —i . +i (NN )2
v | + 3 | = [ 3" Mk ]1/2.
N2+ VP x§+v2 (xgnz) (NZ+v®)

2,2 4 2 2
Mg+ vt e ol s ahv?

0 if A€ (0,2)

(20) ——
v >

48
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For « =2 we have

2
sup [ g0y ]1/2 =
~ ER (\';.’wz) (xiwz)

2
(Nt \)
) i M 4 1/2
lim I:( X :' = )‘j"')‘k

Y>> jwz) ( )\i+v2)

whereas for x € (0,2) the supremum is attained for

~1) (\2+\2) + l_(x~1)2(x2.+x2)2 + 4(2-0«\2-\2-]1/2
v2 = ik , itk i k]
2- &

=* Yik
A short evalurtion will show that for all k,j and

2,2 4 2 2

)\j\k + v + ZXijV + (\ - )\k)
2,2 4 2 2, 2
xjxk + v+ (xj + \k)v

<
1+ 2\12 =: C

Noting that Xjk > 0 and that 0 < )‘l < )\2 <... we get for

€ (0,2)
2
P ( 3 3 ) =
Ve R (xj+v )()\k'by )

Py,

b iz
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W 2
Y2 (xj+xk> 1/2
(2 =) 5 5
_y \§+)\12( + ((2\§+2\§)2)1/2 2
2oy [ |
J 2—
3
-2 2..2,4/2 412
A+ o+
ATTOGFRNI OGN (2-,<)
‘ x—z(__3_ “/2(\ !
- 3 & .
< 2T )2\ oI a1
2-4 J
and therefore we find
y"faw) <
QO (e 0] R N
\ R S
<b,d.>_ <b,d. > B(d.,d )|V +
[ [ | j'o k“o "'k 2,2 2, .2
521 k=1 )‘k'H )\j-w
a a0
= — (b.,$)
N\ Q@5r®%)
< L/ |<¢'¢j>° <$rd >, o Ic
j=1 k=1 ik
- 3 d r
o 2¢ Y /2 (e ) v 1 for ~€ (0,2)
1 3 k
Nythy  for = 2
Y B e I S e e L e
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™18

' Iy 2 1/23=3
|<¢,¢j>° <¢,¢k>0|92(1+xj) (1+),) \,

3 x
. c(—) 72
] 2—0‘

A8
7

1+4

(14)) (1+xk)1+" for € (0,2)

In

ST I g L +1l4x

1<brdy>y i lo,1en) 27 e 2

' L C for A= 2

. 2\ @ o

( -3 3 2 \ \ o1

c/2)\ 192(——2_’( LikLl [<brd>, | (14X5)
Ja =

gt
iN18

+r2+1+x

’ -r, r1+r2+1+o( -ry
(1+xj) |<¢,¢k>°| (14%) (1+)\j) for

J ~<e (0,2)

)

Calatd
o

Tatale

ce r.+r.+ +1

2 172

—= (1+)y) |<é,$, >

RERICEW

18
et

e r +r
\ (1+)‘k)

+<+1 -,

2 (14

for ~'= 2

co 3 «
2 /2 2
—_—(—) o, ¢l . for &€ (0,2)
<
ce,

e1"¢"r1+r2+1+¢:\“ for ~= 2.
1l

Combining this with (20) the DCT gives




-
o

By, W Xl Lt Y NS TAE® o W, W PR AR A aN) riaseliy’ + PRI

"0 if ~'e (0,2)

lim y"Pm =

Y=>o
b if 0(’2'
where
o @
b = 2_ \L <hiby> <bib> Bloy, b (21 y~1/2.
j=1 k=1
-i 41
lim 2<)‘; > + )‘21 12)
> At Y )\j+v
® @
-1/2
- Z_ \L <bibs> <biby> Bloy b (21T / Ong+hy)
j=1 k=1

2m~Y2q(4,4).

~The assumption that \1 > 0 serves the purpose of

RISl LN POy PN AR Ta
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*
assuring that none of the coordinate processes ]?t[¢j] is

a white noise. The theorem implies that P(v)z"v—z for

large v. For a one—~dimensional Ornstein—Uhlenbeck process

the spectral density is proportional to (\2 +v

2,

-1

. In

view of this, the conclusion of the theorem is hardly

surprising.

Let us look at an example studied by J.B. Walsh [29]):

2
d [
Take H = §° = Lz(lopbl) and L = I- —5 with Neumann :
dx !
i . \ _'- I T T T e T A T LT Y ey v '_ Ta ,‘.
R A \\" \';.*.' et T L ~.‘ X \\ \ e \ \\' \' \ Ve ~‘.. . ‘»’ \'\ - _.". \..
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boundary at zero and b. In this case the eigensystem is

; b"12 for § =0
L éj"‘) =
21/2,-1/2 cos(?zjb_l); j>1 and

22,2, - 35 2 0,1,...,

2

. = + 743
\31 J

and if, for a given 6 ° > 0, we take
Q(d,P) = 62 }g $(x)P(x)dx the series
'= e
* *
=0
converges for x € [0,b] (P~a.s.) to a limit V(t,x)

- satisfying

: * by,

Ny Neld) = }o Vit,x)$(x)dx (P—a.s.)

Walsh then showed that for each x € [0,b], V(t,x) is a

. flicker noise and that the asymptotic behaviour of its
spectral density is that of an f-3/2 noise ([(29], theorem

8.1.). This result may be obtained from our framework as

follows:
when Q($,¥) = ¢2 Ig $(x)P(x)dx 62 > 0 we have
Q(¢j.¢k) = éjkcz' and inserting this in (17) we get:

spectral density of'l?:[ﬁl =

TR AT T 0 Rt R T Ihd B - S N UL A A ISR LS SN S T YO S S TP L P SR DUt Y TR T S e e,
AR N O T B G e A S A BN RL  Ly N e L
LY YA IPRANIN DN SRSV R SRR L I A R IV e N oA S T N G T - CE SO N,
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2 . 2 -1/2 _2_ 1}
b P(Y) = <¢p¢j>° (277) e e
f: Let x € [0,b] and let ¢e(y) be a smooth approximate
'.' identity centered at x.
W
}-:: Then V(t,x) = lim ]?tltb ) and
@ 1

2L la po) = Z (b; xn22m) V22—
x evo ¢ J N+ v
.:-: J=° J
X N ! 2, -2
o (note that L. 2 < ; since )\, = 1+ rrzj b =,
':;Z Moreover |<¢€,¢j>°| <£1 WV e>o0.
';. Inserting the expressions for ¢j and )‘j in (21) above we
7.
3 get:
;:: spectral density of V(t,x) = F(v) =
y s ? [ 1 -\99- 2cos?(k Txb™ 1]
“ — ’
- b2r)1/2 L1 442 é zjzb 24v2
) which (apart from a constant arising from a different
7 normalization of the Fourier—transform) is Walsh's
expression. His procedure may now be followed to conclude
> that P(m)x ¥ ~3/2 gor ~ large.

Walsh remarks that the sample paths of V(t,x) for each x
f
’

-’ I.J’_',-‘II."‘JI'.J‘J'J'-’J'..'I

o ~

':-\.'.-. % e
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are very irregular. Since 12:[01 = lg Vit,x)¢(x)dx we
would expect the sample paths of ]}Z[#] to be much

smoother than those of V(t,x). The fact that P(v) is not

a flicker noise, whereas F(v) is, is therefore intuitively

agreeable.
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.. CHAPTER III .
- LINEAR SDE'S ON A COUNTABLY HILBERT NUCLEAR SPACE:
7;:: EXISTENCE, UNIQUENESS AND WEAK CONVERGENCE OF SOLUTIONS
N
)
2
. We have previously investigated various properties of the
f solution to a linear §’-valued SDE of the form -
x -=I,7
an, L' N4t + aw,
; where —L was the generator of a selfadjoint contraction
5 semigroup {Tt : t>0} on a certain Hilbert space H with the
“ -r
property that there exists r1>0 such that (I + L) 1 is
Hilbert—Schmidt on H, and where the nuclear space § was
defined by
2 '
¢
: =-tper: [+ Wy<o VaqgeRr).
- W, was then a §’—valued Wiener Process.

L
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The existence and uniqueness of solutions in the above

context (for Wiener and Poisson generated noise) is due to

A Kallianpur & Wolpert [14]. However, it is also important
to be able to solve such linear ¢’ —valued SDE's in
situations where {Tt : t>0} does not have the property

; ' that some power of its resolvent is Hilbert—Schmidt and

. the topology of the nuclear space is not so intimately

related to the generator ~L. Also, it is of interest to

be able to solve such equations when the noise is a

2

generel L“—semimartingale on §' (see page ¢/ for

» definition).

» "- ‘- .l .l .

In section 1 we shall address the question of existence

a.

and uniquenesc~ of solutions to SDE's of the form

e« » % A T &3

(1) dN, = A'NAt + aM; N, = N

defined on a generel rigged Hilbert space § <5 H<s @'

" (see GeIfand & Vilenkin (6] page 106 or Appendix) where

= A:® > @ is continuous, and A is assumed to coincide on
i ® with the generator of a semigroup (T, : t >0} defined on
H and mapping § into itself. (see AS.1 page 4’ for the

is

=~ precise assumptions on A and {'1‘t : t>0}), and where Mt

a (weak) Q'—valued Lz—semimartingale, defined on page ¢/ .

By analogy with the finite dimensional situation we might

expect to be able to write the solution as
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3 Ne = TR+ fo Ti_gaMg
2’,} which requires a definition and study of §’'—valued
: stochastic integrals. Although stochastic calculus has
[A™
been developed recently by A. S. Ustunel [26]), [27], [28]
:; and Korezlioglu & Martias [16] for the dual of a nuclear
" space, from a user's point of view it is preferable to be
3

able to solve §’—valued SDE's without first having to
learn stochastic calculus on §’. Moreover, since the
3 equation is linear we would suspect it should be solvable
N
o without any reference to stochastic calculus. Indeed, by
::.'_: formally applying It8's lemma to
f; T! _AaMm we get
. t-s s’ g

(2) =mn+ [Earml_Mas+mM  aus
’?t t’? (o} t-s's t e

:: as a candidate for the solution.
'
: In order to show that (2) is indeed the solution to (1) we
- first show that the stochastic integral equation

S't- ]’2 + fgk'gsds'l»xt a.s.
'-,'. has a unigque "weakly CADLAG" solution for X in a class of
>
\ §’—~valued processes which contains the §’—valued
o
- L?—semimartingales and that this solution is given by
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- ’ t ’ ’
(3) Se TN + o ATy _ Xgds + X, a.s.
(this, of course, will include a proof that the right hand

side of (3) actually defines a §’—valued process).

Once this is established it will follow that (2) is the
unique weakly CADLAG solution to (1), and it is then

proved that for every T>0 there is Pp e N, such that

(Nedoceer € D([o,TJ.LpT);

the Skorohod space of all §_ P —valued CADLAG mappings on
T
{o,T].

Finally, in section 2 we prove the main result which,
loosely speaking, asserts that if the initial condition ]‘2
and the noise M in (1) converge weakly then so does the

solution to (1).

III.1. EXISTENCE AND UNIQUENESS OF SOLUTIONS

Let § < H <> @’ be a real rigged Hilbert space where H is
a real separable Hilbert space. Let T denote the nuclear
topology on § and let {§r : r € M) denote the generating

sequence of Hilbert spaces for (§, T) and let §__ := 3§’
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with the strong topology. For r € W , h-H, -l
denotes the Hilbert norm on §r @_r). We shall denote by
& the strong topology of §’ and we recall that (§’,6) is
the (strict) inductive limit of (§__ '“'"-r’reuo° 8(3)
will denote the 6 —field generated by the strongly open

sets in §’'.

To avoid confusion with inner products we shall adopt the
notation that for I} € ', o€ N($] will denote the

value of the functional I} evaluated at é.

Throughout the rest of this chapter A will denote a

T —continuous linear operator: § - @ satisfying

AS.l. There exists a strongly continuous semigroup

{T, ¢ t20} on H whose generator coincides with

A on § and such that:

(a) T.0c® Vte>o
(b) Tt|§ : § > @ is continuous in (§,7)
¥V t>0
(c) t > T_ ¢ is T—continuous for every ¢ € 9.
dll.d. . LEMMA

For any t > 8 > 0, any $ € § and any F € §' we have




&

PN NEAEA

e A A,

Pty il R 5k PN A T R iy Iy D I R

61

t
(4) FIT,_ ) — FI$] = fs FIT,__Adldu
t
(5) | - Js Plt, _ Abldu
PROOF :

Let t >8>0, e d, Fed'. As.1 (a), (b) and (c) imply
that Tt|§ is a strongly continuous semigroup on (¢,0). Let
B denote its generator (wrt. the Z—topology) and put

J = pom(B).

Then § is dense in §, and for every ¥ € § we have, since

Fed,

Ed‘; FlT, _.¥) = FIT,__B§); u > s and hence

Flt,_ §1 — FI¢1 = [C Pl __B¥ldu V ¢ € T, and similarly
Fit,__¥] - FIY] = I: Fl,_,B¥lds V v e§

also, for every § € {,

(T, -I)§
lim —h . BY in (¢,
h‘O h
since §<» He» §’ is a rigged Hilbert space, |.|l is

r—-continuous and hence

(T, -1)§
Lim | —R—— - Byl = 0

hl0
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but, by AS.1 we have for any ¢ € §

(T, —-I)¢
. h
Lim | ——— - adlly = 0

hlo

and since J ¢ § we must have

AAVAFATAY

1t " % %

L}
g

B} =A) W ¥ € §, hence

o FIT,_ 81 - FI9) = (S PIT,_Afldu VvV ¥ eF
e = J‘; FIT,_ Afldu V § €3

= Now, let § ——- ¢ in (§,7), § € . Then
n>wm

)

|F(T,_ AP, 1 — FIT __Adl] ;-:);)D 0

i Nad

r

for every u € [s,t], by AS.1l. and the fact that F € §’

Further, since F € §’, F € Q_q for some q € N_, and since
by AS.1l. (c) the mapping :
[s,t]1 > u > "Tu—sAtn"q

is continuous for each n € N,

A f(u) ¢ = sup ||T___AP || ; u e s, t]
3 neN UTS 74 '

defines a lower—semicontinuous function f on [s,t] (note

o that the above supremum is finite for each u € [s,t],
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since § ->¢ in (§,T)). In particular, f is bounded on

. [s,t], and

rard
1
Q
c
U
®
>
<
)
=

A
=
"
c
<
-
(0]
=

ORIV RS R A

and hence the DCT gives

N t t
- Ss FIT __A§_)du - IsF[Tu__sAdﬂds, but

t
[s FIT, Ay ldu = FIT _ ¥ 1 — F(§]

—_— F[Tt_eél — F[$], by AS.1l. (b)

n>w
o
<
»*
3 and hence
v
FI(T $1 - Fl$] = It FIT___Aéldu
t-s s u-s
- In a similar way we obtain
- _ = (t
: FIT, _$] Fl$] fs F[Tt_uAMdu
< Since ¢ € § was arbitrary, the proof is complete.
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III.1.2. THEOREM

For any ), € §’ there is a unique ¢’ —valued weakly

differentiable function ) : [0,®] - ¢’ satisfying

SN = NtIad) :
véed
Q(O)[M = Qolw

PROOF :

EXISTENCE: Let 'rt'__ denote the adjoint of Tt regarded as a

bounded linear operator: § = §. We claim that

]?(t) = T{:]‘zo is a solution:

In view of AS.1. (a), (b) and (c¢), let B denote the
generator of {Tt : t >0} wrt. the T—topology and let

§ = Domain(B). As we have seen previously,

B} =A) V § e . Now, for P e §, t = TI NIV is
differentiable with

d
(*) &El?o['rtm = QothB‘Fl = Qo[*rtwl.

As a consequence of AS.1. (c) t = Té’?o is weakly

continuous, so for any T>0,
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PEPD

sup [T/D.($]1|] <@ VW ¢€9.
0<t<T tno ved

\;14

N Hence the Banach—Steinhaus theorem yields the existence

i

of Py €eEN ° and a constant CT>° such that

sup [T (41| < Culléll vV $e
0<teT o ol Prp )

But then T'N € LPT vV t e [0,T] and

sup TN N_, < Cp<
0<t<T o Pp T

. ‘44:",‘.. l.'

3y 8-

Now, fix ¢ € §, and 1let b,€e8 ¢, > ¢ in (9,2) as n > ™.

Pt

s
LI I )

Then, for any T>0,

sup D I7.6.1-Nn_I(T.$)] <C ) > 0asn=-> o
A 0<t<T ’20 t'n ]?o t len Ip,r

Hence t > N IT.¢] = T N [¢] is differentiable and (*)

- and AS.l. (b) now give

; d .
; GENo(Teh) = 1w NITAR,)
" n

= l?O[TtA¢]'

concluding the proof of existence.

UNIQUENESS: Suppose that (t) is another §’-—valued

weakly differentiable solution. Let y(t) := Q(t) - 5(t).

- Then y(t) is weakly differentiable and satisfies
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ély(t)lél = y(t)[Ad]

Véed
v(0)[¢] = 0

For each t>0 let z(s) := T/ _y(s); s € [0,t]. Then there
is a dense set § @ such that [0,t) s -> z(s)[{J] is -
differentiable for each § € §, and

Lasiigi=0 Vveed Vset

E%roof: Combining AS.l. (a), (b) and (¢) we see that
Tt|§ is a strongly (i.e. T—) continuous semigroup of
linear operators on Q. Let B denote its generator (wrt.
the z—topology) and take § = Dom(B). Since l-Ng is

Z~continuous it follows that

A} =B VY Peif. Fix s € (0,t). Then for any ¥ € § we

have

z(s+h)[§)-z(s)[P], _
| b |

y(s+h)[T ___ #1-y(s)[T _ 0]
h

|y(s+h)[Tt-3’h¢—Tt—s¢] . y(s+th) [T _ _§1-y(s)[T __¥]
h h

But y(.)[$] is differentiable for all ¢ € §, so

y(s+h)['1't_¢] - y(s)t'rt__sm

lim =

h->0 h

..":.;;.(\:_'.‘ R AT e P T e S A T e e e ol
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da
a;y(u)[Tt_svllu_s = y(g)[ATt_swl

= y(s)[T, _ A}]
(7) = y(s)[T, _ BY]

Further, since u 2> y(u) is weakly continuous, we have for

any compact set K with s € interior (K)

sup |y(s+h)($)| <@ WV ¢ €9,
hekK

and therefore the Banach-—Steinhaus theorem yields the

existence of a constant CK and re e No such that

sup |y(s+hilol| < Celldll, WV éded
hek K

But then for s+h € K:

|y<s+h)Er t"s'hwh- Te—s? + Tt_sav:“ <

Tt-s—h¢ - Tt—s¢
h

C

o * T Bl

—> 0 as h > 0 since § € J and l.l, is Z—continuous

¥ re -o‘ Thus

Ty _g—p? = Te_g?
lim y(s+h)[—E=8=B- =87, o _y(gy(r,_ B,

h->0 h

and combining this with (7) we get
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» lim z(s+h)Lh- z(s)§_| = 0 as desired.]

N h->0

N Therefore for any 4 € (0,t) we have for every § € §
"

N

Y

z(B)(P) - z(A)(P) = Lt.\. ;sz(s)[nllds

v eze &
i

= 0, and hence
» Yy Pl = 2(0)[P) = z@)(¥) WV P ed, V ae (0,t) so
3 (8) Y(OULP) = ya) [T _ 91 V §e€ §, YVa € (0,t)

But A4 = y(4q) is weakly continuous, so again the
. Banach—Steinhaus theorem yields the existence of a

constant Ct and rt e .o such that

sup [y(a) (¢l <c liéll, VvV éed
0<a<t t

o
ats

'y 4,

Hence y(4a) € §_r Yaelot]
t

Now let Yo = y(%); n>2. Then, since y(0) = 0, Yn is
weakly convergent to zero in §’ and hence strongly
convergent to zero in §’' (see e.g. Gel’fand & Vilenkin [6]
page 73), and y_ € §_tt ¥V n>2. But the strong topology of
$’ induces the ||.ﬂ_rt— topology on Q_rt. Hence

Yy, ——> 0 in @

—r. * By (8) we have
n->w t

Y
3d y() {9 =y [T _t ¥ V §e §, V n2 so
P n
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lyer ] <y d_ I7e t ¥l V¥R V2
n

and letting n & o we get (since

T, _t o, - IT.9ll., as n > o)
t—= i, ttie,
yit)d(91 =0 WV ey

Since § is dense in § and y(t) € §' it follows that
y(t) = 0. But t>0 was arbitrary. Hence y(t) = 0 V¥V t>0,

concluding the proof of uniqueness.

A Let (0,P,P) be a complete probability space. In the
sequel all stochastic processes and random variables will

be defined sa (O ,F,P).

A mapping Y :00 &> @’ will be called a §’—valued random

variable iff Y is 8($’)/F measurable.

A mapping Y, : 0 > Q_p will be called a Q_p—valued
: random variable iff Yp is B(Q_p)/!‘ measurable; where

B(Q__p) denotes the Borel s—field on §—p' pem,.

Let I < [0,m). A mapping X : Ix) -> §’ (respectively
Ix0 > §_p) will be called a §’'—valued (respectively

—-valued) (stochastic) process iff V t €I X _(.) is a
-p t

$§’-valued (respectively Lp-—valued) random variable.

Pl e )
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A §’—valued process X = (X, ) oy Will be called measurable
iff (t,w) > X, (w) is 8(3’')/8(I)xF measurable; where 8(I)

is the Borel ¢—field on I.

Similarly, a §_p—valued process X = (X, ) oo will be
called measurable iff (tw) = X (w) is a(Lp)/s(I)xr

measurable.
Let {X, : t > 0} be a $’'—valued process satisfying

AS.2.; V ©0 ] O, € P with P(8,) = 1, Jq(t) € N such
that

X (w) € Lq(t) vV sel(ot] V wedqn and

Y w e ‘)t ¢ the mapping [0,t) > s > xs(w) is

CADLAG wrt. ||.||_q(t)

t v .
Then, for every t>0 X := (X ) o0 4 is a Q_q(t)—valued

ﬂ.ﬂ_q(t)—CADLAG process (P.a.s.) and therefore (since

‘§-q(t)’”"—q(t)) is a complete metric space) X is a

Q_q(t)-valued measurable process. Since (§’,s) is the

(strict) inductive limit of {(Q_q it follows

’ " . " _q) }qeno
that X is a §’'-—valued measurable process.

We can then show:




ying, 0lle Ol Nl i, W P G i e, T Dl T W ¢

Kas & A

III.l.3. THEOREM

" Let (X, : t20} be a ®’—valued process satisfying AS.2..
¥ Let ) be a §'~valued random variable. Then

'y - (a) There exists a §’—valued process §t gsatisfying
!

Al

(9) P(§,[$] = NI + jf, § [Adlds + X, [$) V € B =1

. V¥ t>0 and

)

. A

' (10) 3 G e P with P(G) = 1 such that t > § (») is

. CADLAG wrt. the weak topology of §’ for every

- we G.

\ (b) If . and 1), are two §'-valued processes

> satisfying (9) and (10) then
[~ (11) P{¥, = N Y t>0} = 1.

- PROOF :

(a) EXISTENCE: Fix t>0. By AS.2., there exists 0, € F

with P(Otal) and q(t) € B, such that

: X, w) € i—q(t) V s elo,t] V we 0, and

o 8 > X (w) is CADLAG wrt. "'"—q(t) Vwen,
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But then for ¢ € § : X (w)IT _ Ad]| <
'xs(w)n—q(t)nTt-—sAN’q(t) Vselo,tl Vwed,.

AS.l. (¢) implies that s - |T is continuous on

t-gP®lg ey
{0,t] and therefore the integral

Ig xs(w)['rt_sAMds is finite for all we 0, and all $ed.

We claim that for every we€ nt the map
¢ > jg xs(w)[Tt_sAMds is continuous on (§,7):
Let we O0,. Let ¢ - 0 in (§,7). Then

sup "Tt—sA¢n"q(t)<°° Vv s € [0,t]
n

(since AS.1l. implies that ¢ > “Tt—sM’"q(t) is continuous

wrt. £). Define

£(s) = sup "Tt-sA¢n"q(t)
n

Since s > IITt_sAMl is continuous on [0,t] by AS.1l.

g(t)
(c), £ is a lower semicontinuous function on [0,t] and

therefore bounded on lo,t']. Hence f € Ll(lo.t]). Now,

< f(s) ¥ n € R and

l'Tt:—s‘wn llq(t)
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“Tt—sh"n“q(t) <> 0as n>® V s € [0,t]

(recall that A is continuous on § and so is T __ by AS.l.

(b)). Since

'xs(W)[Tt—sA¢n] | € "xs(W) "-q(t) "Tt—-sM’n“q(t)

< X (e f(s) WV nen

-q(t)

and since s > |X_(w) || is CADLAG (note that

-q(t)
|||xs(w)||_q(t) = 1%, ||_q“,_)| < IXgter=x (w) ||_q(t))

and therefore in Ll([o,t]), the DCT gives

t
/o Xg(w)[T,__ A0 1ds - 0 as n>o.
Thus, ¢ ->'Jg xs(w)[Tt_sAM is continuous on § for each
we 0, . Also, for each ¢ € ®, the mapping

t . :
B 3w > Io xs(w)[Tt_sAMds is measurable since (xt)t20
is a measurable process.

Now, a §’~valued map Y on (0},F) is a §'—valued random
variable iff Y{¢$) is a real random variable for every

¢ e Q (recall that for a countably Hilbert nuclear space §
the s—field generated by the strongly open sets in @’ is
the same as the §—field generated by the weakly open sets
in §’ which in turn is equal to the smallest ¢—field in




§' with respect to which all the evaluation maps
¢: N> Nl Ned’', ¢ ed, are measurable). Therefore
the §'-valued map §t : O > @' given by

t
jo X ()T, __Ablds for we O

FLwIld] =
0 for w¢g Ot

is a §’-valued random variable. Now, define a §’'~valued
map ¥, : o > ¢ by

TN + Eiv) + M w); € 0,
ft(w) =

0 forwgnt

(where T{ : §' > §’ is the adjoint of T _ considered as a
continuous linear operator on §).
Since X, and n are ¢’ —valued random variables and since
T, satisfies aS.1. (b), ¥, is a §'—valued random

: : r _
variable. Hence (51:)':20 is a §’'—valued process.

Next, we claim that (¥, : t>0} satisfies (9): Fix t>0 and
let ¢ € §. Recall (1) of Lemma III.1l.1, i.e. for any

F € §’ and 0<s<t we have

(12)  FIT,__§) - F(9] = [: FIT,_Abldu VvV §e§

80, in particular, letting F = xs and § = A, we have for
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2
(13) X WIT,_ Abl = X_w)[Ad] +I§ X ()T, _ _A%plau
¥ s ef(o,t]
Each of the following statements holds for every we ﬂtz
t
E @] =N@)IT ] + X )] + fo Xg (W) [T, _ _Aplds

(by (12) applied to l?(w) with s = 0)

¢

= QW] + f; Rw)IT Adldu + X (w)[$]
+ Xg W) [T, __Ablds

(by (13))

b

= Nwid) + jg R [T Apldu + X _(w)($] +
Ig E{s(w)lAw + f: X T, _ _a%$lau|ds

= NwWId) + jg NW)HIT Ablau + X (@[] +

t

fo X, w)(Aplau + [t fo Xg W) [T, AA$1dsdu
t

= Nty + [¢ [Q(w)lTuAM + X (W) [AP) +

/‘; Xg@) T, _ AAdlds|du + X, (w)[]

= NwI$] + f‘; F @) [Abldu + X, ()],
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Since ¢ € § was arbitrary, (9) is proved. To prove (10)
note that AS.1. (b) and the fact that J} € $’ imply that

t > ]?(w)['rt“ is continuous for every « € { and every

$ € §. We shall conclude the proof of (10) by showing that
for P.a.s. w € 0 the mappings t - X _(w)[¢] and

t > Jg xs(w)[Tt_sA¢] are resp. CADLAG and continuous for

every ¢ € §:

Let TnTm. By AS.2. for each n € W there is O € F with

P(On) = 1 and q, € B such that

X, W) € an vtel(or] Vtean

and the mapping t > X () is hel_

qn—CADLAG on [O,Tn] for

every w € On.

Let G = N o
n>1

n Then P(G) = 1 and for each n € N

t > X, (w) is ||.||_qn—CADLAG on [0,T 1.

Fix u>0. Then u € [O,Tn ) for some n, € N and hence we
o
have

X we G : |xt(«u)[¢l - X @)ldl1] <

X ) = X )] _g ol Véed, vtetror ]
no no o]

So, for each we G, t > xt(w)[d:] is right continuous at u

for every ¢ € §. If u>0, take t,s<u, and we have for each

Epa S Sl S A T TR AR TR IR T TR R RTRGRT T
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we€ G:
[X, () 1] = X_w)I]] <

X ) = Xl ey~ V420
o o
But the limit as t,sfu exists and is equal to zero on the
right hand side by choice of G. Therefore, for each w € G
t > X ()[$] is CADLAG at u for every ¢ € §. Since u>0
; was arbitrary, t = Xt(w)_is CADLAG wrt. the weak topology

> of §' for every we€ G. Next, we will show that
Vweg:t> [Sx wir,_aldsed
‘ o8 t-s"*

is continuous wrt. the weak topology of Q’: Fix w€ G and

let u>0. Then u € (o, 1 for some n, € N and
- [o]
t > X () is I-l_., —CADLAG on to,7_ 1.

q
n o
N o

- Therefore, there exists a constant L = L(w) such that

sup B tw)ff _ < L(w).
te(o,T_ ] In
n, o

But then, for any $ € § and t € [0,T, ] we have
o

LR

e,

Hg Xgw)[T,_ Adlas ~ [2 XgW) [T, _ Ablds| =
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sgn(t—u) S::Xt xs(w)[Ttvu_sANdsl <
tau
So Lw)||T,__Ab - Tu_sAMlqn as +
(o]
VU oy (wIT Adlds| <
| thru s tvu-s I -

T
n
S° o L(w)||Tt_sA4> - Tu_SMﬂlqu lig,t yy(slds +
o
ferSnw T abll . ds
tau tvu-s q, *
o

The first term tends to zero as t = u by the DCT since

IT,_gad — T _ _Ad| < 2 sup I T _gadll < @
t=s u=s M 0<s<tLT t-s 9,
o ="="="n o
o
(by continuity, since AS.l. (c) implies that

(s,t) > "Tt—sAMan is continuous on
o

(ts,£) € 10,7_ 1% : ogscth).

o

The second term tends to zero as t -> u since

"Tt. u-sM’"qn . Lie u,t u)8) <
o

sup
ocscter.  NTe-ghblly < o
Legeety, 0y

and since tyu - tAu = |t-ul.

As u > 0 was arbitrary and ¢ € § was arbitrary we see that

t > Jg Xgw)[T,__A.]ds is continuous wrt. the weak

g Iy Pty A
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topology on §' for every w € G.

Thus t - §t(¢u) is CADLAG wrt. the weak topology of §’ for

every «w € G. This concludes the proof of (10).

(b) UNIQUENESS: Suppose that 4, is another ¢’ -valued
process satisfying (9) and (10). Let y(t) ='§t - §t‘

Then, for each t>0 there is ), € F such that P(0,) =1 and

Vwe 0, : y() 1] = [E yis)wrinplas Vv 4 e §.

Also, there is G € P with P(G) = 1 such that t = y(t)(w)
is CADLAG wrt. the weak topology of §’. Hence, there is

G, €F with P'Gl) = 1 such that

y(£) )[4 = [T y(s)wiladlds Vv $ € §, V t20
for each we Gl‘ Hence

y(t)(w il =0 WV ¢€§, ¥V t>0

for each we Gl' by theorem III.1l.2. (take ]’20 = 0 in

theorem III.1l.2. and use the uniqueness part). Thus

P{y(t) =0 V¥ t>0} = 1, as claimed.
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REMARK L.

Note that we actually showed that the §’'—valued process

given by

. t pome
5, = TLN + X, + }o A'T{_ X_ds

(the integral being in the weak sense) is the unique (in
the sense of (11)) §’-—valued stochastic process

satisfying (9) and (10).

Note also that we showed that for every w€ G the mapping
t
t > NW)T$] + ]o X (W) [T, __Adlds

is continuous for every ¢ € § when X = (X_) satisfies

s's>0
AS. 2. L

Let {F, : t20} be a right continuous (i.e.

(\F, = F, V £20) filtration on (0O,F) such that F_
s>t ) ‘
contains all P~null sets.

Recall that a real-valued Ft-adapted process M = (Mt)t>0

is called an Lz-semimartingale wrt. (Pt)t>0 iff M admits
1 1 N

1
= (Mt)tZ
1,2

¢) <o V t20 and

is a CADLAG Pt—adapted process of bounded

2
t

a decomposition M = B + M™, where M 0 is a CADLAG

martingale wrt, (!'t__)'__ZO satigsfying E(M

B = (Bt)t?_o

variation on compact sets satisfying EB_ < oo V¥V t>0.




REEINLIION

A §’—valued process M = (M,) is called a (weak)

2

t>0

¢’'-valued L“—semimartingale wrt. (Peesg iff

2

véeod: (Mt[¢])t2° is a real—-valued L“—semimartingale

wrt. "t’tzo°

- REMARK 2

A. S. Ustunel [26] has defined the notion of a (strong)
$’—-valued semimartingale. A (weak) semimartingale in the
above sense gives rise to a strong §’-valued
semimartingal- (see [26], theorem III.l.), whereas if

X = (X,)
(X 19150
not necessarily in L2(Q,P,P), (éed.

£>0 is a strong §’~valued semimartingale then

is a real—valued local semimartingale which is

The L2 property is, however, crucial to our argument.

III.1.4. THEOREM

Let (X_ : t>0) be a §’—valued semimartingale (wrt.

(P.) Then (x£ : t>0) satisfies assumption AS.2.

t)e>0’"

PROOF ¢

(Adapted from a proof of I. Mitoma concerning Gaussian
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processes ([21], theorem 1, proof page 211/212)).

Fix t>0. Since (X_[$] : s € [0,t]) is a real—valued

2

L°-semimartingale for each ¢ € §,

E(sup lxs[4>]|)2 <o V ¢e9.
0<s<t

Since xs(w), s € [0,t] we 0 is a continuous functional

on §, the mapping xt(w) defined on 9 by

xtw)($) := sup X  w)[1]
s€(0,t])

is a lower semicontinuous function of ¢ € § for P-a.s.,
we ) (note that the above supremum is finite for all
$ €9 and P.a.s8. we 0, since s > X (w)[$] is CADLAG for

every ¢ € § and P-a.s. v € ).
But then V ($) : = E(Xt(¢))2 is also a lower
semicontinuous function of ¢ € §, because if $ > ¢ in Q,
then Fatou's lemma gives

. . t 2

liminf V (¢ ) > E(liminf(X"($ 1)

n->w n->o

> E(xt(4))?2

=V ().

Hence, for any n € B the set {¢ : Vt(é) < n} is closed
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- (V ($) 2 0V ¢). Now,
" @ = U (¢ : Vv ($) < n) and since (§,r) is a complete
~ n>1
. metric space, Baire's theorem implies the existence of
N n, € ¥ such that interior({¢ : V. ($) < n }) # §, i.e.
k.- {¢ : V () < n_} contains a z—neighbourhood of zero in §.
But V. is a convex function of ¢ satisfying
i V. (ad) = lalzvt(¢) %V a € R and hence
2 E,:={ded:v(d < n,} is convex and balanced.
? Now E, contains a Z—neighbourhood of zero in ® (and
- hence Et is a’so absorbing), i.e. there is a set Dt of the
- form
2
: D, ={$€7: "¢"pt < €.1}; €>0 such that D  c E,.
; But then there is a constant Ky such that
4 Pg (§) < K,pp () V ¢ € ¢ (where Pg(.) denotes the
- t t
fé Minkowski—functional for the convex, balanced and
: absorbing set B). Now,
= vt(¢) % lH)“"t
W P (¢) = ( ) and p, () = ———  hence
» t n t e
~ o t
"
\I
p. 2 =202
- Vt“b) < Kyn €, "¢"pt vV éed.
7
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Since § is countably Hilbert nuclear there is r, 2 p, such

) . -Pe
that the canonical 1n;’|ect:1.on(,r : Qr > Ep
t t t
is Hilbert—Schmidt. Let {¢, : k € W} be a CONS in [
t

consisting of elements of §. Then

fe.2]
2
) 18 dp < @ s
k=1
@2
E(sup >_ (X 14,2
se(o0,t] k=1
@ : @
\ 2 \
< E(sup X [, 1)° = V. ()
=/ s 'k /[ "tk
k=1 S€lo0,t] k=1
@x
2 2 =2
< C 21. "¢k"p < ®, where C. =King€. %, i.e.
k=1
2
E(sup "xs“—r ) < oo.
S€[00t]

Hence there is Gt € F with P(Gt) = 1 such that

2
sup I Xg (w) ||_rt <o V weG,

s€f{o,t]

i.e. for each we Gt there is a finite real number N(w)

such that

sup Ixg 12 < Nw) < .
sef{o0,t] t

Choose q, 2 r, such that the canonical injection
r
t

’ ' H - :
tqt : eq > Qrt is Hilbert—Schmidt and let (§, : k € W)
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-

)
RO




A b e

f'.t'

85

be a CONS .in‘g_q consisting of elements of §.
t

By assumption on X, for each k € W there is Ok € F with

P(Ok) = 1 such that the mapping

[0,t)> s > X_w)[§, ] is CADLAG for every w € 0,.

@
Let O, = G N ( N O,). Then P(H,) = 1 and
k=1

X @), ] - X 19,11 < 2N(w)|l¢k||2

for every w € Ot and every s,u € [0,t]). Since

a0

Z el xz't " a0 it follows by dominated convergence that
k=1

2
lim ||X_(w) X, (w) "_qt =

sJ’u

®
lim 2.. (X (WP, — X (1§, D2 =
sfu 5
[0 0]

Z lim (X () §, ] — X (w)[¢k]) =0 VweJn,.
k=1 8{"

Similarly,

‘2
lim [X ) = X, @2 =0 V wea,.
stu t

s'fu

Further, since q; 2 Lyr

DRI ::'.:\ T RON ." ‘~q.:' AR
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o

sup X )|l _, < sup IxgwHl . < o
se(0,t] 9e ~ selo,t] t

Vv we Ot. completing the proof.

REMARK 3
For reference later we note that we showed that

E sup I x ||2 < . Since q_ > r, it follows that
s'—r, t =

sefo,t] t

2
E sup Ix 1< . <oo.
sefo,t]  °© ~9

—Recall that a real-valued process (Yt)tzo

is called progressively measurable wrt. (rt)t>0 iff

(a) Y,  is F _—adapted Vv t>0

(b) VYV t>0 : (s,) > Ys(u): (s,w) € [0,t]x0) is
B(l)/ﬂ(lo,tl)xrt measurable.

—Recall that A is a continuous linear operator on § and
that (T, : t>0} and A satisfy AS.l.. Let A’ : §’' > @'

denote the adjoint of A.

By A AT
o ® e A
""'ﬁo ‘.{,.’( (?,‘"(’ e

86
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REEINITION

Let M = (M,),,q be a §’—valued L2-semimartingale and let

N be a §’'-valued random variable.

I.et‘yt 1= (X, ) : 0<s<t}V({P—null sets}, t>0. A
¢’'-valued process ¥, is said to be a solution to the SDE

on §’ :

dgt = Aﬂ§tdt + dM,
(14)

So = R

iff

(i) VY ¢ € ¢ : the mapping (t,w) = 5y ()] is

progressively measurable on [0,®)x{ wrt. {_'%_ ¢ t>0} and

(ii) for every t>0:

(15)  P(§,(4) = NIP1 + [0 ¥ (Ablau + M (4]
V ée P =1.

Further the equation (14) is said to have a unique

solution iff for any two Q'—-valued processes (§t)t>0'

()‘21,_)1_.Zo satisfying (i) and (ii) above we have
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(16) P{, =1, V 20} =1.

I1I.1.5. THEOREM

Let A : § > @ be linear and T—continuous and suppose that

A satisfies AS.l..

2 . .
Let M = (Mt)tZO be a §’—valued weak L“—semimartingale and

N be a ®’—valued random variable. Then the SDE on §’

dff = A'gtdt + th
(14)

5o = N

has a unique solution satisfying (10) of theorem III.1l.3..

Explicitly, this solution is given by

- ’ t ’ 4

5, = TIN + M+ jo A'T;_ M ds P.a.s. V t0.

(where TG denotes the adjoint of Tu considered as a
continuous linear operator on §, and where the integral is
in the weak sense).

PROOF

By theorem I11I.1.4., theorem III.l.3. applies and thus the

$’-valued process given by
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= m? t ’ -
(17)  §, =TI + M+ [CA'T]_Mds (P-a.s) VY t20

is the unique (in the sense of (11) and therefore of (16)

¢'-valued process satisfying (10) and

P(S.[9] = NI + M 141 + [ 5 (adldu V¥ e J) =1
VY t>0.

(17) obviously implies that §t[¢] is _‘/t—adapted V t>0 for
every ¢ € §, and (10) implies that t > F.[$) is CADLAG
P-a.s. for every ¢ € § and therefore (t,c) > S ) ld) is
progressively measurable wrt. ‘yt for each ¢ € § (by Meyer;
[20] theorem ™ 47).

Hence §t given by (17) is the unique solution to (14)

satisfying (10).

111.1.6, PROPOSITION

2 ‘ .
Let M = (Mt)t_>_0 be a §’'~valued weak L“-semimartingale,

and let N be a $’—valued random variable satisfying

Ell]‘zllf_r < © for some r € W, . If either

(i) NAL (Mg, : 820} or
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(ii) ]’2 is Po—measurable

then the §’'-—valued process

% = Tt':]? + M+ sgA'T"___sMSds (P—-a.s.)

2

is a §’-valued weak L°—semimartingale wrt. (%)t>0'

>

PROOF

e €T

We already know that [¢] is —adapted for every €
t t

is a

Oietie s . _ge e,

and if either (i) or (ii) holds _hen (Mt[¢])t_>_o

2 s : [
(yt)t20~r" —semimartingale for every ¢ € § Therefore it

v

suffices to show that for each ¢ € § the process

r

(MIT 4] + [S M [T _ Ablas)

is a CADLAG Lz—process of bounded variation on compact
sets. But it follows from lemma III.1l.1l. that

t > NW)[T ¢] is differentiable for each ¢ € § and each
we 0, and the mapping

t
t > Io M () [T, _ Adlds

is absolutely continuous for P-a.s. «# € (). Thus it only

remains to show that for every ¢ € §

E(N(,$) + f:} MIT, — Ablds)? < o ¥ £20 :
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; Fix ¢ € § and t>0.

N By Remark 3 there is r, € W, such that

t

E sup “Msllir < oo. Hence
0<s<t t
E(NIT 61 + [ M 1T, _ad1as? <
]7 t O 8 "t-s -
2 t 2
2E(NIT 1% + 23(/0 M [T, _ Alds)® ¢

: 2 2
2EINIZ T bl +

t .
&5 [¢ L W L iy Lo U o L U

v e

- 2. ¢ 2
: < 2T blizEiniZ
3
o
3 t (t 2 1 2
_ 2% [¢ ®1n 12, Eln, 12 "2y, _ bl T 2bl, dsdu
y
i 2 2
: < 20T 41 ZRN2
- 2 t 2
- 2E(sup  |IM_J12_) ([ I, __Adll. as)? <
. 0<s<t sl—r, o t-s r, '
since Eﬂ]?llir <o by assumption and s > [T __Adll, is
2 t
" continuous on (0,t] by AS.1l. (c).

For any T>0 and q € 'o let D([O,T],i_q) denote the
Skorohod space of all Q_q-valued functions F on (0,T)

r‘ ."".f""f(--‘.

N"‘\.Is {\. -fff

a
--------
Wt Lt .

"b‘r
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2 which are CADLAG wrt. ||.|_. . D(10,T1,§_,) is a complete
- separable metric space under the metric constructed by
d Lindvall (19] (see also (14]}).
"
e
N 1ll.l.1. COROLLARY
Let M = (M,),,, be a $§’~valued weak semimartingale and
let 1’2 be a §’'—valued random variable satisfying either
., (i) or (ii) of proposition IXII.1.6. and Eﬂ]?llir for some
oo
- rem.
N
X Let £, denote the unique solution to (14) satisfying (10)
whose existence was shown in theorem III.1l.5..
- Then, for every T>0, there exists 0, € F with P(0g) =1
-7 and p, € W such that
'. T
- ( ) = ( T e .
,*5: € (@)= (F W) yorg py € DULO, ]'LPT) Vwe o,
-
; PROOF ;
<
€, is given by
: T, =T!ND + M +["A"r' M ds (P-a.s.)
- S 4 tn t o t-s's te
o« -
3 and therefore (St,t_>_0 is a §’'~valued weak
Lz-semimartingale by proposition III.1l.6.. Hence ft
- satisfies AS.2. by theorem III.1l.4.. But AS.2. is
3
fr; N T et e TN e T S e e LR L NN S S L SR N N e S S
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equivalent'to the assertion of the corollary.

For any §’'—valued process Y = (Y,),,o define for T>0
v 2

If M= (M) . is a §'—valued weak semimartingale then,

by theorem III.1l.4., for every T>0 there exists qp € W

such that
T
M° e D([0,T),§__ ) P-a.s..

Corollary III.1l.7. says that for any "reasonable® initial

condition I} there is Pp € 'o such that

T
3 em[o,'r],LpT) P-a.s..

If g, = min{qg € W_ : M € D(r0,73,§_ )}

then, it is clear from the expression for Ay that in
general Pp 2 Q- However, when Q and the operator A have
special properties frequently encountered in praxis we may
always take Pp = Qs provided that Q € ﬁ_qT. To see this,

we first prepare some auxiliary results:

1iL..8. LEMMA

" Every uncountable analytic space is of the second category.

LT B - e Tih Y a4 o - " o™
L e e I T e T
hahl ) b3 A

T
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o PROOF:
2N
fq Let S be an uncountable analytic space. Then S contains a
2
% subset K which is homeomorphic to the irrationals (see J.
2.
W Hoffman—Jgrgensen & F. Topsge [7), theorem 7 page 22 and
33 subsequent remarks). Since the irrationals are of the
~ﬁ second category, so is K and hence S.
e If § # {0}, then (§,“..|p) is of the second category for
each p € lo.
- PROOF ¢
j Let p € N_ and let{p : § > ip denote the canonical
< injection. Then, since‘t'p is continuous, (i.ﬂ..ﬂp) is a
- continuous image of the Polish (i.e. complete separable
j metric) space (§,7), and thus (Q,u..lp) is analytic, so
= the conclusion follows from lemma III.1.8., since every

real vector space of dimension > 1 is uncountable.

For p € W let <.».>, denote the inner product on Qp,

) |
Leee  <h>p = —(h + QT - NIZ - 1913

PR L Lo e Lo L Lo

T R R R N e A AL IR E
(A "-'.: o }‘!;-"0-“:..'11.'-‘:'.\".\..#" "I.'.' ‘..

DI P A P N S A AR IR T S W S N N N A S S N A
g (Rl AL ‘¢ ' *, \-'\' ™ o )




A set 4y:3emc ® such that
(i) (4)3- : j € N} is a CONS in Qo and

(ii) vpe-°v¢,ve§p=

i)
b, = 5)_1<¢.¢j>°<¢.¢,->on¢j 12

is called a common orthogonal system for @p : p € lo}.

111.1.10, LEMMA

Suppose that § has a common orthogonal system (4>j : je

W} for @p : p €N},

1f B : §° > §° is a bounded linear operator satisfying

B) < §, then
(18) a§pc §p Vpes,
(19) Blip ig . ﬂp—continuous Vrepen,.

PROOF ¢

Let p € -o' For each k € W, define
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k
f‘;m - ;a#.#j%l#jlf,: $ed

Since Ilﬂlp 2 léll, Vrpenm, V é€Q and since B is
continuous on §°, f; is a |. ﬂp-—continuous function of

¢ € § for each k.
Also, sup £5(¢) = Bél2 < @ WV é€§ since BJc §.
p P

ken
Therefore,
£ () := sup fk(¢)
P xem P
is a lower semicontinuous function on (3§, |. lp). Moreover

fp(aé) = |a|2fp(¢) V a€eR and f is convex on §.

P
Hence, for any n € W, A = (¢ € § : fp(cb) < n} is a

closed, convex and balanced subset of (§,§. ||p). Further,

8~ U a.

n>1
Since (¢j t j € N} is a common orthogonal system for
(ip : peM}, §# (0} and thus lemma III.1.9. implies

the existence of n, € W such that

interior(A_) # @ in (§, ...
n, P

- -

o w APy ARt A, vawa ey
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Since A, is convex, balanced and contains zero, A,
o o
contains a zero—neighbourhood in (Q,H.up); i.e. there is

€ > 0 such that

¢ed: H¢Hp <cercibed: fp(¢) < ng}
But then there is a constant K such that
() CKIGIE VéeT e

IBel2 < xielly ¥ 4 €3

Since § is dense ir Qp (18) and (19) follow.

III.1.11. THEOREM

Let H = §° and suppose that § has a common orthogonal
system (¢j : j € W) for {Qp : p € M_}. Suppose further
that (in addition to satisfying AS.l.) A is dissipative
and selfadjoint on H = §°.

2

Let M = (My),,, be a §’-valued weak L“~semimartingale

and suppose that MT e D([O,Tl,ﬁ__q ) (P—a.s.) for some T>0.
T

Let T} be a §’'—valued random variable such E“Q“ir < @
for some r>0 and suppose that ]? satisfies either (i) or

(ii) of proposition III.1l.6.. If N(w) € Q_q vweQq,
T




AP

.. N 22

FreS

‘
LR AP bl R RS

then

g €D([0,T),§__ ). (P-a.s.) where
Ay

’ t ’
Se = Te ¥ jo A'Te _gMgds + M.

PROOF:

Since T, is a bounded linear operator on H = Qo and

T.3C @ by As.1. (a), lemma ITI.1.10. gives TthTC -rtQQT
V t>0. Hence T!$__ < T!§__ V t>0 and therefore
= ti-q, ti-q, 2

IIT"__Qﬂ_qT < ® VY t>0. Also,

“Mt“-q.r <o VY 't € [0,T] P-a.s. by assumption.
To show that also

n]; A'TL_Mgdsl_g <@ Vtel0T] (P-a.s.)

M ()T, _ Adlds

it sufficies to show that ¢ - jg

extends to a continuous linear functional on Qq for
T

P—-a.s. w € f):

Since A is selfadjoint on §_  so is T, for each t>0 and

t

since T A = AT, V t20, T A is selfadjoint. By the

t
gspectral theorem we therefore have
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<T Ad,$> = IG‘KA) \e\td<z(\)¢,¢>o vV éed

where S6(A) = Spectrum(A) and E()) is the unique
resolution of the identity on Eo associated with A. Since

A is dissipative on §°, §(A) < (-a,0] and hence

2
I<Tabd> | <K MOI2 V0 Vel

1
Where K, = sup |\e)‘t| < — <o VY t>o.
\E (A) et

Since § is dense in Eo' T A extends to a continuous linear
operator on Qo for each t>0. By AS.l. we also have

T,A§ < § so lemma ITI.1.10. gives
TtAQq C§q and
T T
(20) TtAliq is II.IIqT continuous V¥V t>0.
T
By assumption there is OT € F with P(OT) = 1 such that

t > M () is || ~CADLAG on {0,T] for each w€ 0.

But then

(21) (£ [MgttT,_Abllds <0 V $€8 V te 0,1
V we 04, because

(22) |M () [T, _ AdI] < M (w) ll__quth_sAMqu
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~ . v . .
> and since $ € §, s > "Tt-s”“q.r is continuous on [0,T]
~ by AS.1 (c). Let n € N. We claim that:
N
\ (23) é > St";l/n lMs(w)[Tt_sAMlds is continuous on
3: @nll-lqu) for all we€ O,
N
8
e Let ¢,¢k € § and suppose that || — ¢k"q > 0 as k 2 .
T
& By (20) fiT, __Alé-0 1] ——-> 0 for each s € [0,t—-1/n].
: t=s _ k"Tp ke .
- Hence '
4 f (8) := sup ||T,__A(d-P )|, <@ V¥ s € [0,t=1/n]
: n kER t-s L
:. and since s > Ith_s{¢-¢k)||qT is continuous on
N (0,t~1/n}, fn(s) is lower semicontinuous on [0,t-1/nl],
\
. and thus fn € Ll(lo,t—l/n]). Therefore
:’:: t-1/n
X - |M_(w)H [T, __A(¢~9. ))|ds ——> 0V we O
- so s t—s k K->00 T
by (22) and dominated convergence.
> Defins, for t € [0,T] and we€ O, fixed,
’
‘. -
2 9y ., ($) = sup ]f) /0 M (T _ Abllds; b€ B
ol n
- Then, by (21) and (23) 9% is a lower semicontinuous
' ’
2 function on (§,]. uq ). Moreover,
., T
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gt'W(A¢) = |a|gt'w(¢) VY a € R and

9y, 18 convex on ¢.

Since (@, . "q ) is of the second category by lemma
T
III.1.9., it follows by a now familiar argqument that there

is a constant C(t,w) such that

e, !9 S Cltm bl YV 4ED

Hence, for each t €[(0,T] and we OT' - Ty extends to a
’

continuous function on Qq . But then
T
t t
B M )T, Ablds — (T M_(w)(T,__A$lds| <
gt'w((b -9 < CltpN | - WIIqT and thus
¢ > jt M_(w)[T__ _Adlds
o''s t—s

is “'“q —continuous on § for each t € [0,T] and we O,
T

Since § is dense in Qq '

T

é > I:; Ms(w)['l‘

t—ghtlds is continuous on §qT, i.e.

t
fSarm;__mM_(as e §_qT V t e10,T], V we 0.

Hence ¥ (v) € §_q vV telor] VvV «e .
T
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-—CADLAG on [0,T] (P—a.s.),
p

we note that the conditions of Corollary III.1l.7. are

To show that t -> %, is f.H_

satisfied, and thus there is Pp € ¥ and GT € F with

P(GT) = ] such that
(24)  ¥T(w) e DO, TLE_ )V we Gy
Fix s € [(0,T]. Let tn 'L s as n -»> @. Then by (24)

§tn(w>l¢l > F Pl Véed Vweo

i.e. for every we GT

§¢ (W) ~—> ¥ _(w) weakly on §’.
n n->w

Since § is countably Hilbert nuclear this implies that

? (W) === (w) strongly on Q’'.
ta n->w s 2

Since St(w) € Q—q V 0<t<T ¥V w€ 04 and since (@' .6) is
T
the strict inductive limit of

{Q_q : Q € R} this means that

uftn(w) = Fglw) "‘qr >0V we Gynhy,

But (Q_qT;II. Il_qT) is a metric space, so sequential right

continuity wrt. |[.|

~q implies right continuity
T
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wtt.ﬂ.|L_qT. Therefore,

Fple) is ".u_qT-right continuous at s € [0,T) for every

we OT GT.

In a similar fashion we show that the left limit $g— (<)

exists in [.[|_, for s € (0,T] for every w€ GgpNOp.

Ay
Hence fT(w) € D([O.T]:ﬁ_q ) WV we GT(\OT conpleting the
T

proof.

REMARK 4

Corollary 1II.1.7. may be derived without assuming that I?
éatisfies either (i) or (ii) of proposition III.1l.6., but
the proof is rather long and tedious and since the
resulting gain in generality is practically insignificant
we omit it. Instead we note that this assumption may

consequently also be dropped from theorem III.1l.1ll.

REMARK 2

The class of countably Hilbert nuclear spaces possessing a
common ofthogonal system for the generating sequence of
Hilbert spaces iﬁp : p € M} is rather large and in
particular it contains any nuclear space generated in the

manner discussed in Chapter II and Appendix. In particular

LT I PRSIl
AP o ‘.;'r{:' N -‘r‘-"-:‘,- ,



it contains the Schwartz space 57(ld) of all rapidly

decreasing functions on ld.

—Theorem IXI.l.11 is a generalization of a very recent
result by R. T. Chari ([4], 1985). He shows the following:
(A denotes the closure of A in H)

Let § = J/%; B =7 =12@b. Let a: Y@ > Lah
be continuous, linear and suppose that A is selfadjoint
and dissipative on H. Suppose that there is a strongly
continuous semigroup of bounded linear operators

{T, : t20} on -V(ld) satisfying

(25) FIT $) — F[¢) =
[‘; FIAT dlds t20 V Fe @) vee Lad).

(in view of his other assumptions on A and (T, : t20} (25)
amounts to saying that A is the strong generator of

(T, : t>0} in the (%) -topology)

t

d

Let M = (M,) an ¥’ (R“)-valued weak martingale for

t>0 Pe
which there exists q > 1 such that

v T>0 : MT € D(L0,71,3_) P-a.s.

1f Elll?liq < ®, then the SDE on ¥’ (%)
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df, = A'Etdt + aM,

5o N
has a unique solution §= (ft)tzp sagisfying
v 0 : € € p(l0,71,§_,) P-a.s..

As Chari remarks ([4], page 10): "It is easily checked

that th = etAf for £ € (ld), (where etA is the

Al s

2(nd) generated

semigroup of selfadjoint contractions on L

by A)". This in combination with (25) implies that our

assumption AS.1l. is satisfied in Chari's casé and in view
- of Remarks 4 nd 5 above we therefore see that Chari's
result is a special case of theorem III.1l.1ll. and theorem

: III.IQS.O

His method of proof is quite different from ours, however,
and makes use of finite dimensional approximations,

; obtained through a theorem by Doleans—Dade ([5]), to the
: solution and then it relies heavily upon the existence of
a common orthogonal system in 51!6) as well as the
dissipativity of A. Although his method gives that

ST e D([O,T],i_q) rather painlessly, it does not provide
an explicit formula for the solutidn. Also, as theorem
III.1.5. shows, neither dissipativity of A nor the
existence of a coﬁmon orthogonal system are essential for

the existence and uniqueness part. Further, theorem

e a2t m ermt BT, a®y ey - LI e P ) Y e T M T T e aT P T ELW LW LY . e T R
‘-._‘.t‘,’ﬂ‘.-.'._..... o e A e A e A I Gl )‘0 ...-_..L..}
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II1IX1.1.11 shows that the assumption that thé noise "lives"

in the same I_q for all t>0 is not material to the

2 conclusion. In fact, this assumption makes the nuclear
‘l
‘:: structure of 4 superfluous (the fact that ¥ is nuclear
Nl
n does not enter Chari's proof at all) and in effect reduces
- the problem to solving SDE's on a Hilbert space.
REMARK §
i If the §’—valued weak Lz—semimartingale M= (M), has
—: the property that
&
-
- (26) Véed: MIél,,, is a continuous real
> 2! -
-~ Lz—semimartingale (P—-a.s.)
D
o
‘s
2 then the spaces D([0,T1,§__ ) and D([0,T),§__ ) in
o Pp A
respectively Corollary III.1.7. and theorem III.l.1ll. may
} be replaced by the spaces C([O.T].Q_p ), respectively
. T
o C([O,Tl,I_q ); where C[[0,T],§__) denotes the complete
.__' T
H metric space of all ﬂ.l__f-continuous functions
. £: (0,71 > @_ .
o Notice that when (26) holds then
2
o,
’ T
- (27) V 10 Jrpoem : M € C([o,rlgi_rT) P-a.s.

((27) may be proved following the exact same procedure as

was used in the proof of theorem III.l.4.). The necessary

:.,: *‘J"}L\ - :: \.\1‘\? -' “" ¥



: , 107

changes in the proofs of Corollary III.1l.7. respectively

theorem III.1l.11. are obvious and therefore omitted.

Hitherto we have not been concerned with the construction

2

of §’-valued weak L°—semimartingales. In fact, our

definition of these presupposes that a §'—va1ued pfocess

P B

M= (M) is already given and then it is an

2

t>0

—gemimartingale wrt. a filtration (Pt)tzo if Mt[¢] is a
2

for each ¢ € §. In praxis,

L

real L“~semimartingale wrt. F

t
however, one is often given a family {(M(¢) : ¢ € §) such

7 that M($) = (ﬁt(¢)) is a real semimartingale for each

£20
¢ € § and such that

for each t20, (\;:/$;:\,r,) € RxOxRx§,

and so the question is whether there exists a §’—valued

.,

process M = (Mt)tzo such that

M [$] = M. [$] WV t20 P-a.s. V ¢ed.

The following result, which uses a technique devised by K.
Ito in [12]) known as regularization, gives a sufficient

condition which is often useful:

\' L3 A LA 4
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111.1.12 THEQOREM

Let M, = {it(¢) : ¢ €0); t>0 be a family of real valued

stochastic processes. If (it)t>o has the properties
(L) M (c; 4, + c,9,) = c My (b)) + c M () P.a.s.
V £20, (c;,c504,,$,) € RxRxPx$ (note that the

exceptional w-—set may depend upon the choice of

(c1rC509,04,) and t)

and
. ~ 2 2
(B) V T>03C, > 0 Jr, € M_ : Esup (M_($))* < C.[ ¢l
T € Mot BotRa e Cpllélly,,
V ée§, and
(C) Véed: (ﬁt(¢l)t>o is an Lz—semimartingale.
Then

(a): There exists a §’—valued weak L2-semimartingale

M= (Mt)tzo such that

(b): If (M () : ¢ € P}; t20 satisfies (L), (C) and

= 2 2
(B') Jr e W,V T>0 § C>0 : Esup (M ($))€ < Culldll¢
vV éed,

0<t<T
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M [$] =M () VWV t20 (P-a.5.) V €D

(and consequently M is also a §'—va1ued weak

2

L =-semimartingale).

PROOF :

(a): Let T =0, T >T _,; n21 with T fo. By (B), for each

n € W, there is r, € llo such that

Esup M M2 cc, o2 Vveoed
Ogtg'rn n n

For each n € N choose q, such that the canonical
.r
inject:ion('qn is Hilbert—Schmidt. Let {¢n : k € B} be a
n
CONS in % consisting of elements of §, and let

{f st k € ﬂ} be the CONS in Q dual to {fk : n € N}
I
n
(i.e. fk[tbjl = ka Vv n).

.r

By (B) and Hilbert—-Schmidtness of Lq“ we have for each
n

nen:

K]

[0 9]
- 2 '\— -
Esup ) (M, "2 < ) Esap  (H (4™
FMPILLLEDRE WL
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Sy L1 n

Hence for each n € B there is On € P with P(0n> = 1 such
- that

a
-, sup }_ (i, (pPw)? <0 V¥ we o
05t_<_'1‘n k=1

Put G = n on. Then P(G) = 1 and
n>1

@
¥ n€ W : sup \ (ﬁt(¢2,~'))2 <o VY weag,
' Oce<T, kLs.I.

% vV t e 10,7 ].
X,
24
.
— Define
- k2]
- \ % (4D n .
- /. M ($ 0, if we e
n k=1
Mt(w) = ; t € (0,T.]
& 0 ifwgga
= Then, for each n € N we have
: Mi(w) € §_ V weeG VtelorT).
- 9, n
and 0> w > M:(w) is a i-q —valued random variable for
n
each t € [0,T 1.
s Define
A
s
B o P e o e A e T L T T L
AAGRRIN e o g T S o L e T e L T D e e e e
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1l \ n
M (w) = M_(w)l + M_ ()1 {(t)
t t [o,T,] ng’z t (T,_y,Tp]

. then M_ is a §’'—valued random variable for every t>0.

t

Fix t>0. Then there is n € W such that t € (Tn_l,Tn]. But

S then
n n,,n = n
M [ ] = M (4] = M ($) P.a.s.
for each k € BR. Hence by (L)
M. (9] =M (§) P.a.s. Ve span{¢£ : k € N)

But span (¢: * k € N} is dense in §_ and (L) and (B)
n
imply that ht extends to a bounded linear operator from
Qr into L2(0,F,P). Hence it follows by continuity and
n

the fact that ||é — ¢n“q > 0= ¢ -9 |, > 0 that
n n
M (4] = M _($) P-a.s. V b€ Qqn, in particular
vV ¢ebd.
{ If t=0, then a similar argument gives

: M [$) = M () P-a.s. V ¢ €. Hence

M. [$) =M () P-a.s. VYV el V t20,

and therefore (C) implies that M = (Mt)tzo

weak Lz—semimartingale. This concludes the proof of (a).

is a §’'—valued
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(b): Since § is a countably Hilbert nuclear space there is
P € W such that the canonical injection 4 § > 8,
Hilbert—Schmidt. Let g = min{p>r "Lp

Hilbert—Schmidt}. Let {¢, : k € W} be a CONS in §q
consisting of elements of § and let {f, : k € N} be the
CONS in §_q dual to {¢, : k € W}

(i.e. £,0441 = Skj v k,j € m).

By (B’) and Hilbert—Schmidtness of‘L; we have for each T>0

@ ®
E sup }: (Mt(¢k))2~5 E: E sup (ﬁt(¢k))2
o<t<T L & ostqr

Hence, for each t>0, there is llT € P with P(IXT) = ] such

that
@
sup \L (M (b <o V we b,
0<t<T
St k=1
Let T too and put G, = /1 0O, . Then P(G;) = 1 and
n>1 n
@2
V we G : sup \L. (iit(w)wk))z <o VYV T>0.
0<t<T

By (C) for each k € N there is Bk € P with P(Bk) = 1 such
that

\'.\ . v.*' e
Dt
\)\ . o ." ae et

a¥ e «a Ve’ .
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t > M_(w) (¢, ) is CADLAG V we€ B,.

Let G = G, N ( e B, ). Then P(G) = 1. Define

k>1

X

\ H W g)f, if we G

[Tt k) *k

k=1
| M () = 120
3 0 ifwg G
: Then M _(v) € §_q VY we G ¥ T>0.
: Fix T>0 and for n € N put
. \ —

2wy = { K71 ; t € [0,T]
_ 0 if o2 G
- By definition of G the mapping
: t > f:(w) is CADLAG on [0,T] wrt. u’“—q for every w€ 0,
3 i.e.
’ £Mw) € D([O,T].ﬁ_q) VvV we 0.
4 Moreover, using (B’)
. 2
. Esup M (w) - £P )2 <
ogt<T  °© t q

: @
N E sup \ (ﬁt(¢k.w)) <
: 0<t<T yamia
....... o ot A o SR R e e T S T e S T T S e T T e S e e e e T e e
R S S e N T T I T T T N e e L S A AT A T
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2] @
N Esup i b, N2 < Y collé |2
0<t<T t' 'k [ TTH%kMr
k=pn+l "="= k=n+1
@
> 0 since ) lé ||2 < ®
Y k"r *
k=1
By the Riesz-Fisher theorem there is U € P with
P(Up) =1 and a subsequence £, such that
k
l K2
sup M()-—-£ (). ——> 0 \V4 € U,,.
o<t<T ¢ t 9 k> T

Since £f™(w) € D([O.T].Q_q) ¥V newNYweH this implies
that

MTw) € D(LO,T1:8_ )  V we Uy
Now, let T f and put U = /) U, . Then P(U) = 1 and
n>1 n

t > M_(w) is [|.]]_ —CADLAG on [0,0) V weU.

q
Thus it only remains to show that

M [d) =M () WV t20 P-a.s. V ed:

Let ¢ € §. Then, for € G we have, for a fixed t>0,

M ()] = iitwk,w) vV k€N

8o by (L) we get




M [§) =M (§) P.a.s. V ¥ € span{d : k € W),

By (L) and (B) § > M_(}) is a continuous linear map from
® into L%(0,F,P). Since also M, is continuous on § and

since span{¢, : k € W} is dense in § it follows that

But t > M, [4] is CADLAG P—a.s. and so is t -> M _($).

M. [$] = iit(d)) V t>0 P-a.s.,

and since ¢ € § was arbitrary the proof is complete.

REMARK _7:

Suppose that (M"($) : ¢ € 9},,, are families of real
valued valued random variable; each satisfying (L) and (C)
of theorem 1II.1.12. and each satisfying (B’), but with
the same r for every n € N. Then, since for each n

qg = min{p : {; is Hilbert—-Schmidt}, we see that q can be

chosen independently of n; in other words there is q € uo

such that

Mt T g D(L0,T1,T_)
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We shall now give an example which shows that one cannot
always expect to be in the situation discussed by Chari
and by Kallianpur & Wolpert, i.e. we shall show that there
exist §’'—valued semimartingales which are not confined to

staying in some Q_q for all t:

EXAMPLE

Let H be a real separable Hilbert space and let L be a
positive definite selfadjoint densely defined linear
operator on H and suppose that there is some r1>0 such

that (I + L) is Hilbert—Schmidt. Let § be the

countably Hilbert nuclear space generated by (I + L); i.e.

§=(per: [(IT+LPly<o VreRr)

and for r € R, §_ = I - | .—~completion of §, where

r
lol, = I+ %l éed.

Let p : [0,®) = [0,®) be an increasing surjective
function. Then the mapping (t,s) - <¢'¢>p(tAS) is a
covariance function for every ¢ € §. For each ¢ € § let
ﬁt(¢) be a real Gaussian process with mean zero and

covariance

Eﬁt(tb)ﬁshb) = <¢,¢>

p(tAs);

et ont DA e 5y
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(where <4, 8>, = 1/2(16 + ¥IZ - 1617 - Ivlp V¥ rem.

For each t>0 let r(t)>p(t) be such that the canonical

. . ‘p(t) : i - i
injection ¢ 2 ) : &, (¢, > Ep(t) is Hilbert—Schmidt. Let

{¢; : k € H}) be a CONS in Qr(t) consisting of elements of
§ and let (ff : k € M} be the dual CONS in §__ (., The
particular structure of ® (as generated by (I + L) implies

that we may take

o
8% = b3/ bslp e, and £5 = ——A—
"*j"—r(t)

where (¢j,\j : j € B} is the eigensystem of L and
2 2r
1] = + . L]
Héslly = (@ + Xy VreRr

Then, for any t>0,

@2 @
N w a2 =\ ty2

E /. (Mt(¢k)) /. ||¢k||p(t) < @
k=1 k=1

In particular, for every t > 0 there is I)t € P with
P(()t) = 1 such that

Q0
N 5 at )2
\: M (@Sl <o ¥ we o,

k=1

For each t>0 define




Pl vf g St

.;‘-.A)J

MY H 9y

@
\ = it t
(é_iut(¢k,w)fk if we O,
t
0 if wg I)t

Then, for each t, M, is a §__ ,,—valued Gaussian random

variable with mean zero. Since 8(3’) relativized to § _

is equal to 8(§_ ) for all r>0, (M )., is a §’'—valued

random variable. Moreover, for é € § and t,s>0

mtwluswl =

QO Q0
E(Z ﬁt(¢§) < 4>.¢§ >rm).(\L__ ﬁswg‘) < ¢.¢§ >eisy) =
j=1 k=1
®
2_ Z <¢,¢§ >t <¢,¢§>r(s)s(ﬁt(¢§)ﬁs(¢§)) =
j=1 k=1
@D o
JZ_’“‘Z:‘_I“"’;%(“ <brdy>r (g <¢tj:'¢ls:>p(b\s)

Now, r(t)>p(t)>p(tpas) and

r(s)>p(s)>p(tas), so

QO o

\ | t 8 t, ¢S
5/_ Li<¢,¢j>r(t) Drd>r () @5 Pp(tns) =
=] k=

“"»p(us)' i.e.

EM [HIM 1] = <bid> (o)

ML R S S L L O L T L I . s
o et ety et W, W TN LT, L <ot AL AR
NN \}'. Y 4.‘.\ S R .i\. - . :
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y Hence, for é,0 € § and t,s>0

EM ($IM_[}] =
1/2(EM [ + $IM_[$ + §1 ~ EM_[$IM_[$IEM, (§IMIOD)

= 206+ Wyeam ~ Wlpiean = Wpcene)’
= <0/ ¥>eas)
Therefore,
(28) V ottt ot  V od.p € [ E
Emtlwl -~ Mf“Wl)(Ht:i[\Fl - MtAWI) = 0.

Let ¥, := {M_[$] : ¢ € §, 0<s<t}V(P—null sets}.

.l

N Since EM_(¢] = 0 V t>0 ¢ € §, (28) implies that

(Mt[¢])tzo is a martingale wrt. (P.) ., for every bed.

Since every real-valued martingale has a CADLAG version,

it follows that M = (Mt)
2

tso 18 a §’'-valued weak

L —semimartingale (in fact martingale).

»

- G e

Recall that

o= b /by, VEKEN VE20

. - I AP T ] M "~
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Cal ld o

and that

fr = b /Udl_rpy VkEN V¥V t3o.

‘o te

Moreover, N’k : k € N} is a complete orthogonal system in
. r
§r for every r € R with ||, |, = (1 + )\ )"; where

0 <)\ L.-.8 A t o as k & o are the eigenvalues of L.

Fix q > 0. Then for any t > 0:

¢ o
: “Et“iq = Z (Mt[¢§])2||f§||3q (P-a.s.)
o k=1

- ® t,,2

. - —-————("tff‘;” NoEN2 o, NEpN2

> L onet P q
» = k"p(t)

N

N @

2 - Z_ y2 (1 + A2 (PUEV D)

Y k=1

: .

- M 4]

where Yy =% ——— -
04 P

Since Htw;] is zero-mean Gaussian with

t t t ;t t
Eﬂt[¢klut[¢jl = <¢k’¢j>p(t) = 8kj “'bk“p(t)

the Yy 8 are IID N(O0,1). But )‘k -> o as k 2 o and p(t)

.« v l...l .

> @ as t > ® so it is clearly impossible that M_ €

A | &

t
§_q (P-a.s.) V¥ t > 0.

s oA 84
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L Our final objective in this section is to show that
nuclear spaces and generators of the type considered in

{14) and chapter II satisfy our assumption AS.1l.:

111.1.13. PROPOSITION

Let H be a real separable Hilbert space. Let —~L be a
densely defined closed selfadjoint dissipative linear
operator on H whose resolvent has a power which is

Hilbert—-Schmidt.

Let E denote *‘1e countably Hilbert nuclear space generated

by (I + L); (see Appendix); let denote the nuclear

2 e et

topology of §.

Then —L maps § into § and is ~continuous and generates a

strongly continuous semigroup {Tt : t>0) on H satisfying

(a) T.8c®
; (b) Tt'ﬁ is T—continuous on § WV t>0
(c) t > T é is T—continuous V ¢ € §.
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Since —-L is a dissipative selfadjoint closed densely
defined linear operator on H, —L generates a contraction
semigroup {T, : t20} on H (see e.g. A.V. Balakrishnan (2],

corollary4.l).

Moreover, since there is r1>0 such that (I + L)~ 1 is
Hilbert—Schmidt on H, H admits a CONS {¢j : j € W) of
eigenvectors of L; Ld)j = xj¢j V Jj where 0<\ < .. S\ <.

and )‘n -==> @, and, by definition,

n->a
a0
O =(peH: Z<¢,¢j>§(1+\j)2r<m ¥V r € R}.
3=1 |
n
Let € §, and §_ = ;-<¢,¢j>¢5.

n
Then §, - ¢ in (§,T) and -L§_ = Zi—xj<¢.¢j>ﬂ¢j.
JS

Let r € R. Then, for all m>n
m

D) = y<brbpgdyl? =

j=n+1

n
2_ §(1 + g 12T ¢, ¢J>H <
=n4

m
Z (1 + xj)2r+2<¢,¢j>;‘; —-— 0, since ¢ € 9.
e m, n>0

b
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() a0

@
H (=LY ) —=>> = N\;<P, 9P
nee (<) 32 ) bty

in the topology of §. But -L is I-Nlg—closed. since ||. |y

is continuous on (§, ) we get

2]

-L$ = 2_ -—)‘j<¢,¢j>a¢j and hence for any r € R
j=1
'y
2 2 2r
L Nj<hrdy (1 + Ny Véed
1= '

N-Lé) 2

" Qo

\ 2r+2 2
Jé—l (1 + xj) <¢'¢j>a

A

2
¢ r+l°

In

Hence ~L§ < § and -L is Z—continuous on §.

- f2]
S Next, with ¢ € §, ¢ = }_ <¢,¢j>n¢j (converging in
N § v i=1

l‘-

we have for any t>0:

<2
T.b = \ e—)‘jt<¢,¢j>n¢j, and for r € R we have

=]

QO

I b2 = 3 e 2t 30+ AT
o
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k2]

< }L.<¢,¢j}§(1 + \j)Zt = ﬂ#":, proving (a) and
=]

(b).

Finally, let ¢ € § and s>0. Then, for any r € R,

L3

hT é-T )12 = Z (€™M = eTNH 2 bR + AT
i=1
@2
\ 2 2r
<4 /. <¢,¢j>H(1 + xj)

J
L
=

= 4f¢ll <

t

and since t > e-\j is continuous ¥ j € N the DCT gives

. 2
lim T, ¢ - T $)lS=0 WV r €R.
t>s t sir

dll.2. MEAK _CONVERGENCE

Several recent articles, including [14]) and (4], have
investigated special cases of weak convergence of
solutions to §’-valued linear SDE's. A common
characteristic of these articles has been that the authors
were concerned with situations in which the limiting

process was driven by a §'—valued Wiener process (see

cqgapter II for definition) and in which A is a closed and
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dissipative operator on H. In addition each author has

operated with either a special sequence of noises ([14];
Poisson generated noise converging to Wiener noise) or a
particular nuclear space ([4]; § = #2%)). In either case
their methods were designed specifically for the problem
in question and do not leave ample room for extensions.
Here we shall exploit the fact that our method of solution
in section III.1l. has provided an explicit formula for the
solution to a linear §’'—valued SDE to derive a general
weak convergence result, which requires neither a special
sequence of noises nor a special structure of Q and does
not restrict attention to the case where the limiting
process is driven by Wiener noise. Moreover, we shall not

assume that A is dissipative.

The assumptions appearing in our result (theorem III.2.1l.)
may at first appear rather abstract and perhaps difficult
to apply. However, as we shall see in chapter IV, these
assumptions together with a result of I. Mitoma [22]
translate very easily into explicit conditions when
applied to concrete examples. One of the recent
applications of this subject has been in neurophysiology,
and we shall see in chapter IV how various results in this
field as well as new results may be derived with the help
of theorem III.2.1..

Let M= (M ) ., and M" = (Mg n € N be §’'—valued weak

t't>0°
T

Lz—semimartingales such that M" := (M

t'tero,r) and

o W AT LV WL - AN
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n,T __ n
M H ““t’te[o,'r] satisfy

AS.d, V ™0 3] O, €F with P(Op, =1, J gy € H:
Vnew: M T e D([o,'rl.i_qT) and
MT(w e D(l0,T),§__) V we o
—dp, T
and

(29) sup E sup ||M:’T||i < .
neEN  0<t<T Ay

REMARK 8

By proposition III.l1.6. and remark 4 (page 10l1) for each

T>0 and n € N there is q,'r‘ € llo such that

n,T

M e D([o.'rl,g_qn) P-a.s. VY nenN
T

AS.3. therefore only serves the purpose of securing that

the same dp will do for all n € N.
Let ]‘2", ]‘2 be §'—va1ued random variables satisfying
2 2
(30) Jr, € W : sup max(E D" <. JEINIS. )} < .
1l neN Q rl' ]? r,

Let fn = (Ez)t}_O respectively 5'(5t)t_>_0 denote the

126




unique solution satisfying (10) to

azl = a’ pat + aMp; 0 = "

respectively,

dj£ = A'ftdt + th; fb = I?

whose existence is guaranteed by theorem III.l.5.. For

each T>0 let, as usual,

~§_n,T

n
Tt)tero,T)

€ = (£ (0,71

By AS.3. there is, for every T>0, dp € "o such that, with
probability one,

MT,Mn'T

e n(fo,T71,9__ ), WY nenw
and by an argument very similar to that employed in the
proof of theorem I1II.l.4. it may be seen that this implies

that for each T>0 there is a Pp e uo such that

n,T

¥

€ D([O,T],Q_p ) P-a.s. V¥V née N and
T

%' € p({0,T1,§__) P-a.s.
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Recalling that the operator A is required to satisfy AS.1l.

(page 58) we can now state the main result:

A THEOREM III.2.1.

Let M = (Mt) and M" = (M:) satisfy AS.3. and suppose

t>0
that Q" and N satisfy (30).

>0

Let T>0 and suppose that

0T =5 MT on D([O,T],Q_q ) as n > o
: T

M
and that
11'-(]‘2n)_1 => Po]?—l as n - o. Then

n,T = T
13 >F" on D([O,T],Q_DT) as n > .

—Before proceeding to the proof we need some lemmae:

I1l.2.2. LEMMA

Let T>0 and let VT denote the set of all real valued

’ functions defined on {0,T]). Define a mapping G:

®xp((0,T1,9__ ) > v
9y

T (Qp is given from AS.3.) by
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G(¢,F) :=v, ¢e€@§, Fe D([O,T],Q_q ) where
T

vit) = _ F_[T, __Adlds; t € [0,T]. Then
(&) V éed VFenorl,d_ ) : G($,F) € C0,T],R)
T

(where C([0,T],R) is the space of all continuous

functions £ : [0,T] > R equipped with the usual topology)

() Véed: Gid,.) : D([o,Tl.Q_qT) - C([0,T],R) is

continuous
(C) V Fe D([o.Tl.Q_q ) ¥ te [0,T] : G(.,F)(t) € §'.
T
PROOF :

Let € § and F € D([O,T],Q_qT). By AS.l. and

CADLAG—property of F wrt. |.| ~ay it is easily seen that
s > F_(T __A¢] is CADLAG on [0,t] for any t € (0,T]. In
particular, this mapping is integrable over [0,t] for any

t € (0,T] and hence G is well—defined.

(A) Let € § and F € D([O,T],Q_q ). Fix u € [0,T). We
T

have to show that t -)jt

o FglTi_gAd] is continuous at u:

IJE F's[Tt-sA‘b] - /g 1'-‘s[Tu—sA’Mdsl =

_Ad) —~ Fs[Tu_sAM)ds +
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Adlds| <

sgn(t—n) St"u

u l?S[Ttvu--s

l tau
Jo (PIT,__Ad) — F_IT _ Adlds| +

| {Evs F LT, ,_cAblds| <

t
(¢ tsup oy Vsl g ITe ghb = T, abllg s +

S€[°l

tvu

u (sup NP ll_g 2N, Bl ds
Et u Celo,T] s —qq tvu~s dp
(letting L := sup ||Fs||_ » we have L < o by CADLAG—

s€[0,T] Ap
property of F wrt. |.l| —q and thus)
T

< {Toa (8) | T, _gAd — T,_ Abll, ds +
= Jo (o ul t-s u-s A
tvu
jb\u L " tvu~-s ¢||ds

—The first term tends to zero as t > u by the DCT, since

for s € (0,T]

lio,t u) (SIT _Ad - Tt__uAtblqu ::);) 0 by AS>l. (c) and

1[0’t sl‘s’"Tt—sA¢ - Tu_sA¢un <

2 sup Il T, _gAdll < o, since
0<8<t<T 9

(s,t) > ||'1't_s)\¢||qT is continuous on
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{(s,t) : 0<s<t<T} as a consequence of AS.l. (c).

—The second term also tends to zero as t -> u, since

"Tt u—sA¢"qT'1[t u,t u](S) £

sup "Tt—sA¢"q < o and since
0<s<t<T T

tvu = tau = |t-u].

This concludes the proof of (A).

(B) Let ¢ € §, and let F® > P in D([0,T1,8_, ). Then
T

sup |G(¢,Fr(t) — G($,FTr(t)]| =
te(o0,T]

t n
sup | (F_-F T, __Adlds| <

t n
sup e, = _ll_, T, _ 2l
te[o,T]f° s s dq t—-s qus

Now F" - F in D([0,T1,3_, ) implies that
T

(31) K =sup sup [[F, ~ F:"__ < @
n€EN 0<s<T dr

(see e.g. (14.32) in theorem 14.2 of Billingsley {3]. His
proof for the case T = 1 and Q—q = R extends without
T

change to T>0 and any real separable Hilbert space).

A A T A A e A A N P S R A S e T T R S S S
AP l.‘.\.l. Aot b,
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Moreover, convergence of F® to F in D([(),’I‘l,l_q ) implies
T
that Ill";l - Fs"—q tends to zero at any continuity point
T .
of F. Since the set of discontinuities of

F e D([O',T],Q_q ) has Lebesque measure zero and since
T

P LINT NE N

A w

n
sup NPy — Foll_g 1T, _Abll, as <
telo, 'rlj 8'=qp" t=s "'aq

' t n
(sup N, _Adll_ ). P, — F_Il_
ogscter | S Tldp ,o s s

(31) and the DCT gives

sup |G($,F)(t) — G(¢,F )(t)| === 0 proving (B).
telo,T] n->w

(C) Let F € D([O,T],Q_q ) and t € [0,T). Then
T

PR S e

36> GF)t) = Jg F T, _ Ablds

5 is obviously linear. Let ¢ - ¢ in (§,7) then for each

s € [0,T]

, F LT, _gAd,] > F_IT __Adl, by AS.1. (b), continuity of A
. on § and the fact that F, €9’ V selorl.

: Also, ¢ > | Tt—sA“'q is continuous on § and therefore
- T

f£(s) := sup||Tp__A(d -$)||, < V¥ selo,T],
new 1.8 B 9p :

and since s > ||T _ _A($ —¢)||, is continuous for each
-s"'¥n dyp
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e

>

) ne N, £ is a lower—semicontinuous function of s € (0,T].
In particular, £ is bounded on [0,T]. Hence

3

N P T _gAd 1 — P_IT, __Adl| <

L e o 0T _A¢d — dll, < IF_Hl_, £(s)

X sl—gn," "t-s n dp s —qq

- () 1
€ L ([0,T]) < L™([O,t]) (recall that

s > |F_|l_ q is CADLAG and hence bounded on compact

. T

- intervals). Therefore, the DCT yields

[G(d, F)(t) — Gy, FI ()] <

t _
So IF'Eith‘--".=»ﬂ¢n] - Fs[Tt—sA‘b]lds ;;Z; o,

concluding the proof.

111,2.3.LEMMA

Let Mn'T, M' be as in theorem III.2.1.. Let T>0, and

K : D([O,T],Q_q ) - C([0,T],R) be continuous. Then
T

N NG N Yy

P (kM Ty)~1 aay  p (k(MT)) L.
n->o

P4

Vetetats s
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: PROOF;

Both D([O,Tl,ﬁ_q ) and C({0,T],R) are complete metric
T
spaces, PO(M“'T)-1 ==)> Pa(MT)—l by assumption, and .
N=->w

K : D([O.T].§_q ) > C([0,T],R) is continuous.
T

Hence the conclusion follows from (e.g.) Billingsley (31,

theorem 5.1. page 30.

DEFINITION

Following I. Mitoma [22] (page 997) we say that a sequence
(P} of probability measures on D([0,T],§’) is uniformly

k—continuous if

Y e>oVv p> o3 &> 0 : p_(xep(0,71,§) :
sup X (61| > € < p V¥ n21 whenever [, < &,
teio,T)
Similarly, we say that a sequence (xn)n>1 of
D([0,T],§’)~valued random variables is uniformly

1

k—continuous if P =P (xM7%; n > 1 is uniformly

k—continuous.

(D([0,T),3’) is defined by Mitoma [22] and contains

n((o.'rl.i_q) ¥ q> 0).

SR R R R o O \;’)‘;‘f A AR A E A B N e A Ay A AP A AN NN G -".:.'\. et e, P\!".“
AT SR AT | SO CMANE TR SRS LRICR LI T LSRN, ARSI N
AP NN S L] O PN, Ot GO N RN A ST SRRt 4 MRS RS
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Mitoma [22) (theorem 4.1 and remark (R.l.)) has proved the
following result which we restate for the convenience of

the reader:
HEOREM A TOMA

Suppose that the sample paths of Y?, n>1 are in

D([O,Tl.Lp) and that (Y™) is uniformly k—continuous

n>1
for some k>p. Suppose further that for every ¢ € § the

sequence of distributions of Y"[$) is tight in D([0,T],R).

LP ;e

Then {¥" : n > 1} is tight on D([o,'rl.Q_p).

P )

i

111.2.4, LEMM

e

Let T > 0, p > 0. Let # denote the class of sets

{{x € D([o,Tl,Q_p : xI¢) enr) : $ €@, A € 8(D[O,T],R)))}.

Then 6(¥) = sm[o.m.ﬁ_pn.
PROOF ;

Recall that the metric on D([O.T].Q_p) is (see e.qg.

"
o
<

.

appendix in [14)) given by

d(x,y) = inf max{sup | x - Y I _ $ (e X))
ArHEAL 0<t<T A(t) pit)l=p’ °T

‘o ..'. .)",_,-,‘..'.'.' ‘
X o 5"}‘ OGN ot MR N SN
AN S0 LS .\.\ R Y I R WY SN, S S R
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where /\T denotes the set of all strictly increasing
surjective functions [0,T] - [0,T], and where the metric
éT on /\T is defined by

A(t) = \(s)

éT(\:u) = sup |log l.
0<s<tLT uit) — u(s)

Similarly, (see e.g. Billingsley, (3]1) the metric on

D([O'T]pl) is

dn(f,g) = inf max { sup |[£ \(t) — g p(t)l.éT(u,\)}
€A 0<t<T

-It is sufficient to show that
V ye€ D(to.Tl.Q_p) Vv € > 0:
{x € D([o,-rl,g_p) : dix,y) <ele a(#).

To do this, we first show that for any x,y € D([O,Tlﬁ_p)

we have:

(32) zggcdk(xltbl.y[w) = d(x,y)

where B = (¢ € { : "¢Hp < 1} and § is a countable dense
set in §p such that § @ (recall that §p is separable),
and where x[¢$) denotes the function h € D([0,T),R) given

by

h(t) = x . ($); t € [0,T].
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Let x,y € D([O.Tl.i_p).

Then

iggcdR(XI¢]'Y[¢]) =

inf _ inf max{sup |x [$) — y l¢l|a6 (Mo N\)} =
“Bc \’peAT 0<t<T A (Y) uit) T
inf inf  max{sup | x (é) — ¥y [¢l|,8 (WoN)}

Define £ . (¢) = sup |x (¢ - vy (¢11.

Baire's theorem implies that f is ﬂ.“p—continuous.
Moreover,

fu'\(aé) = lalfu'x(¢) V¥ a € R, Hence

(33) ;ggc f“’\(¢) = zgg fu’x(¢). so

igf;c dp (x1d1,y($]) =

inf inf  max(f (&) ,6.(d)) =
AueA, dea® HNTT

inf  max(inf_ £ . ($),8 (41} = (by (33))
N€Ap et WM

inf max(sup £ . ($), O ()} =
)\IHGAT “B He T
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inf max{sup sup |x (¢) - y [é1] $ (BN} =
\ru€A,  $eB Octer  ME) ue) TEETITE

inf max{sup sup |x (¢ - y €] $ (W, \)} =
Non€AL o<t<T deb | ME) p(e)t®leOpiny

inf max{sup [Ix -y 0 — é M, N} =
\qu/\T 0<t<T INES) p(t) p’ T’

d(x,y), and (32) is proved.

Hence, for fixed y € D([O,T],E_p) and € > 0

{x € D([o,Tl,Lp) dix,y) < €} =

{x e p(10,T1,3_) igfc dp (x[$1,y[4]) < €} =
: B

{x € D([o,'r],ﬁ_p) : igfc dg (x[$1,y[$D) > e} =
B

Lgc {(x € D([O.T].g_p) 5 dR(X[¢]rY[¢]) 2 G}]c € ( ).
b

IIL

Let T > 0 and q > 0. Let {(x" : N € M) be a tight sequence
of D([O.T],Q_p)—valued random variables.
Let X be a D([O,T],Q_p)—valued random variable. Then

X" ===> X on D([0,T],$_ iff

)
n>w P

X"(¢) ===> X($] on D([O,T),R) V ¢ € .
n=>a
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PROOF :

Necessity follows from Billingsley [3], theorem 5.1. since
for each ¢ € §, the map Hy o([o,Tl,QL_p) - D([0,T],R)
given by H¢(x) = x[¢$] is continuous, and since both

D([O,T],Q_p) and D([0,T],R) are complete metric spaces.

Sufficiency: Since D([O,T],Q_p) is a complete metric
space, tightness of x" : nemw implies relative
compactness by Prohorov's theorem.

Let P Y1 be any limit point of {P (x®»™! : n € N}. Then

n n
there is a subsequence {X k : k € N} such that X k ===> Y.
k>

Since, for each ¢ € @, Hy is continuous, this implies that

n
X K1) ===> YI$] V $e€3.
k>

. A
But by assumption X k[4>] ===> X[$] V $ € 9.
k>0

Hence Po(Y[$]) L = PoxiéD™) VvV e

i.e. P(Y[$) € A) =P(X[$) enr) VWV ¢ée
V A € 8(D{0,T],R).

By lemma IIT,2.4. this implies that
Pey~ ! = Pox~1, and so Pex"! is the unique limit point of

wiale

AN
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(Po(x™~1 . n e W}. But then, since {Po(x™»~ 1 : n e W) is

relatively compact, we must have

1 1

m==> PeX .
n->wm

po(x“)'

(For if not, then there is a subsequence {nk : k € N} and

a probability measure R # P-x~1 on D([O,T].Q_p) such that

n
Po(X k)—1 ===> R, contradicting uniqueness of P X 1'as a

k>
limit point).

I RY ¢

Let T > 0 and p > 0. Let x",X be D([O,T],Q_p)—valued
random variables such that (X" : n 2 1} is uniformly

k—continuous for some k > p. Then

(a) X® ===> X on p(ro,T),9_ >
n->m p
iff
(b) X"1$] ===> X[¢] on D([O,T],R) V ¢ € §.
n->m
PROOF :

(a)=>(b): Since D([O,Tl.Q_p) and D({0,T],R) are complete

metric spaces and the map
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o([o.Tl,Q_p) > x > x[¢) € D([0,T],R)

is continuous for every ¢ € Qp, (a) implies (b) by

Billingsley [3] theorem 5.1.

(b)=>(a): Since X"[$] ===> X[$] for every é € [

n->o
(x"(é] : n > 1} is tight for each ¢ € § and thus by
uniform k—continuity and the quoted theorem of Mitoma
(x® : n > 1} is tight. Hence the assumptions of

proposition III.2.5. are satisfied and the conclusion now

follows from proposition III.2.5.;

Now we can prove Theorem III.2.1l.:

PROOF OF THEOREM III.2.1l.:

By corollary III.2.6. we must show that

n,T

(i) For every ¢ € § the sequence ¢"' " [$]) converges

weakly on D([0,T],R) to ET[¢1
(ii) 3ksz:V€>0VF>03<S>0
n,T é
P(sup 'ft (é1] > @ S-f whenever |H>||k < o.
0<t<T

(i) Let ¢ € §. Then, letting y. denote the function

- S Sttt S v e orish oA il SN - B - sy
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i = 2: Is an immediate consequence of Billingsley [31],

Tre) = NPir.g) + w2 T4) + G, (L) ana

TPl = NIT.41 + MIL4] + G(y,MDI (L),

where G is as in Lemma III.2.2. Let Qg (respectively Ql)
denote the measure induced on C({0,T],R) <« D([O0,T],R) by
]?n[T.¢] (respectively by ]?[T.¢]) and let Qg
(respectively 02) denote the measure induced on
bD(f{o,T},R) by M?'T[¢l (respectively by M?[¢]) and let Qg
(respectively Q3) denote the measure induced on
C(10,T],R) by G(¢,M*T) (respectively by G($,MT)) (recall

(A) of LEMMA III.2.2.).

By Kallianpur & Wolpert [14], Corollary 3.1. (page 142) it

is sufficient to prove that
(iv) Q? => Qi as n=> o; i=1,2,3.

i = 3: By lemma III.2.2. (A) and (B)

Gld,.) D([O,T],Q_q ) &> C({0,T],R) is continuous. By
T

as.3. v™T, MT ¢ D(L0,T1,§_, ) (P-a.s.). Since
T
MU T ooy MT on D([O,T],Q_ ) by assumption Q; == Q3 by
n->c Ay N>

Lemma III.Z2.3..

theorem 5.1. (page 30) and the assumption that

Mn,T T

=2> M~ (the mapping K : D(lo,'rl.§_q ) = D([O0,T],R)
T

given by
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K(F)(t) = F_(4]l; t € [0,T]

is continuous and both D([O.T],§_q ) and D([0,T],R) are
T

complete metric spaces).

i = 1: This follows from the assumption that Qn ===> Iz

n->a
and Billingsley [3], theorem 5.1. (page 30), since for

each ¢ € § the mapping H : §__ - C([0,T],R) defined by
1

H(]}) = h where

h(t) = NIT $); N € Q_rl

is continuous ind both §__ and C({0,T],R) are complete
1

metric spacces.

This concludes the proof of (i).

(ii): Since

§:'Tl¢l = T)"l'rtvb] + 52 M:'T[Tt_sAMds + M:'T[M

we get (using Schwartz inequality)

|§2'T[¢l|2 < 3|I'3”‘['rt4>1|2 + 3t j:’; IM:'T[Tt_sAMzds

+ 3/M2 T 412

P N S S Sy
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< 3”2"['1'1-.4’”2 + 3t2 sup

sup. |M’S"T[Tt_sa¢]|2 + 3|M2'T[¢]|2
<s<t

Thus

E sup Ifz'Tléll < 3(E sup Inn[Tt¢]|2 +

0<t<T 0<t<T
T8 sup  sup lMZ'T[Tt-sA¢]|2 + E(sup IM:'T[¢1|2))
0<t<T 0<s<t 0<t<T
2 n,2 2 2
<30sup T bI2 BN, + tisup i, __adl2 )
o<t O F1 Ml 0<s<t<T  tT8 4
T2 n,Ty2 2
Esup Mg 2, + Esup  IMPTTNZ_ 6N
0<t<T = © dp o<t<T  °© dp " "4y

By assumption (30) E| D" 2 < C; V nm>1 for some
-r; =1 2

Cl € [0,0) and by (29) of AS.3.

n,T “ 2

E su M

<K< V ml
0<t<T

for some K>0. Hence

Ty 2 2
E(sup 1527 1611%) < 3(c, sup [T ]2 +
tefo,T] St Locter " FT T
2 2 2
KT sup IT,_gAdllg + KIbIS )
0gs<teT - ©0S T dp dp
< 3(Cy sup ||'rt¢||§ + k72 sup Il'I‘tMﬂl2 + kloN2 )
0<t<T 1 0<t<T A A

Let g, ($) := sup |7, $)l2 and
0<t<T 1

92(¢) = 825<T “TtA¢“§T; bed
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. Since t > ||TtA¢||r is continuous on § for any r > 0, 9

E i =1,2 is a lower semicontinuous convex function of ¢ € §
satisfying gi(a¢) = |a|2gi(¢) ¥ a € R. Hence Baire's

. : theorem (c.f. proof of theorem III.l.4. page ) yields the

existence of constants C2 and C3 and rz,r3 e uo such that

. 2 ]
5 9 (b < Ci+1||¢llri+l; i=1,2.

Let k=r2V I3V QpV Pp- Then

I n'T

E sup DTrp112 < 3(cy.c, + T2ke, + KI[6]12 W m21,

0<t<T

x Fl

and thus by Chebyshev's inequality

P(sup _ |30°T191] > @ <
0<t<T

R -2 2 2
- € “3(Cic, + TKC, + K) 14l V m21

g and therefore choosing 0< &2 < €2(3(c,c, + T2RC, + K)-lf

- 1€2 3
we see that E"' is uniformly k—continuous. Since k > P,

this completes the proof.

A

s 2 8 8 0"

Mitoma's result (theorem A) remains true if the spaces
D([O,T],Q_p) and D([0,T],R) are replaced by,

respectively, C([O.T],Q_p) and C({0,T],R); see Mitoma
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(22} (Proposition 4.1 and Remark R.1l.). It may then be
seen that our theorem III.2.l1. also remains valid if the
spaces D([O.T],Q_p) and D([0,T],R) are replaced by,
respectively, C([O,T],ﬁ_p) and C([0,T],R).

Since the basic ideas of the proof are unchanged by this

substitution we dmit the details.

—In order that theorem III.2.1. be applicable we need to

be able to check whether Mn'T ==> MT on D([O,Tl,ﬁ_q ).
T

n->w
Corollary III.2.6 transforms this problem into a problem
of checking weak convergence on D([0,T],R) to which the
classical results appearing, for example, in

Billingsley's book [3] are applicable.

-Another often useful criterion for weak convergence on
D(IO,TJ,Q_p) is the foolowing result by Mitoma ([22],

theorem 5.3.2. and remark R.1l):
T R H

Suppose that the sample paths of Yn, n > 1 are in

D([O,Tl,i_p) and that (Y™) is uniformly k—continuous

n>1
for some k > p. Suppose furgher that for every ¢ € Q the
sequence of distributions of Y"(¢] is tight in D([0,T],R)
and for any finite number of elements ¢1""¢m € ¢ and
points tl,...tm € [{0,T] the distribution of

(Y: [¢l....Y: [¢m]) converges in law as n - @ to some
1

m—dimensional probability distribution. Then there exists
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, CHAPTER IV

! APPLICATIONS TO NEUROPHYSIOLOGICAL PROBLEMS

f " In this chapter we shall propose a new approach to

; modelling neuronal behaviour by means of §’-—valued SDE's.

We shall then employ the results of chapter III to giving
three particular weak convergence results which are of

interest for neuronal models.

Finally, we illustrate the application of our approach and
results by giving a rigorous treatment and investigation
of a model heuristically formulated and investigated by
Wan and Tuckwell in [30). But first we shall briefly

describe the neurophysiological context. For a more

detailed account hereof, we refer to [l1l4) and the

references therein. In our description we shall follow the

introduction in [14]).
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A neuron is a cell whose principal function is to transmit
information along its considerable length, which often
exceeds one meter. "Information®" is represented by
changing amplitudes of electrical voltage potentials
across the cell wall. A quiescent neuron will exhibit a
resting potential of about 60 mV, the inside more negative
than the outside. Under certain circumstances the voltage
potential in the neuron dendrite will rise above a
threshold point at which positive feedback causes a pulse
of up to 100 mV to appear at the base of the dendrite;
this pulse is transmitted rapidly along the body and down
} the axon of the cell until it reaches the so-called
S ) *pre—synaptic terminals" at the other end of the neuron.
Here the pul- : causes tiny vesicles filled with chemicals
called "neurotransmitters®™ to empty into the narrow gaps
between the presynaptic terminals and the dentrites of
other neurons. When these chemicals diffuse across the gap
and hit the neighboring neurons' dendrites, they may cause
A the voltage potential in these dentrites to rise above a

threshold point and initiate another pulse.

- Let 3(t,x) represent the difference between the voltage
potential at time t at the location x € X (= surface of
the neuron) and the resting potential of about -—60 mV.
As time passes, g evolves due to two separate causes:

(i) Diffusion and leaks: Depending on the nature of X,
the electrical properties of the cell wall may be

approximated by postulating a contraction semigroup {Tt}

v
" a4 et

.- u"-."' 4 .

G L e
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on Lz(x.T) where " is a suitable §—finite measure on X.
For example, if X = [0,b], core conductor theory suggest
the semigroup corresponding to the diffusion equation
2% . -8F, + da5, (8,6 >

ot

with Neumann (or insulating) boundary conditions at both
ends. In neural material like heart muscle in which
electrical signals can travel more easily in some
directions than in others, the Laplacian should be

replaced by a more general second—order elliptic operator.

(ii) Random fluctuations: Every now and then a burst
of neurotransmitter will hit some place or another on the
membrane and suddenly the membrane potential will jump up
or down by a random amount at a random time and location.
It is believed that these random jumps are quite small and
quite frequent, making it reasonable to hope that they can
be modelled by a Gaussian noise process; in any case the
arrivals at distant locations or in disjoint time
intervals are believed to be aproximately independent,
justifying their modelling as a mixture of Poisson

processes or as a generalised Poisson process.

Because of the problem mentioned in chapter I that
stochastic partial differential equations may not have a

solution except in the form of a generalized process, we

shall model the voltage potential ¥ as a §’'-valued




process, where § is a countably Hilbert nuclear space.

In [14) Kallianpur and Wolpert used a Poisson process
N(AxBx(0,t]) to represent the number of voltage pulses of
size a € A arriving at sites x € B<c X (= surface of the

neuron) at times prior to t.

Here, we adopt the point of view that, in practice, one
can only "average" over the sites. Therefore it seems more
realistic to assume that the arrival sitgs are given by
"generalized functions" (distributions) ) € A < o,
rather than by points x on the surface of the neuron
membrane.X'. As we shall see, this approach will also
offer the adv-ntage of enlarging the class of possible

models.

To pursue this idea let us again consider a real rigged
Hilbert space §<>H <3§'. Let 8(§’) denote the Borel
c—field on §’ and recall that 8(§’) is the same whether
we use the weakly or the strongly open sets in Q' to

define it.

Let A € B@') and let, for each n € N, un be a ¢—finite

positive measure on (RxA,8(R)xB8(A)) satisfying:

The mapping: Q" : x§ -» R defined by

Q" (4,9 = faen aN14I1NIY1u"(daan) is continuous on Fxd.
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Let N® be a Poisson random measure on

(RxAx[0,00);8(R)XB(A)xB([0,00)) with intensity measure
u"(dadnidt (a e R, N € A, t € [0,@)) (such a random
measure exists, see e.g. Ikeda and Watanabe [9], page 42).
Let ﬁn(dad]?ds) = 8"(daanas) - u"(daanras

and put

on _ i .

Yt(d:) = Ikx/\x[o,t]a]?wm (dad]?ds). éed.

Let m" € §’, and define

X2(¢) = tm"[$) + Y2(4); $ € .

Then, for each ¢ € §, i:(¢) is a real CADLAG

semimartingale satisfying
E(x2(¢))2 = tzmn[¢]2 + tQ"(d,4).
since Q7 is continuous on Jx§, the Kernel theorem for

nuclear spaces (see Gelfand & Vilenkin [6]), page 74)

yields the existence of r(n) € R and C(n) > 0 such that

n?($12 + Q" (d, 4 < c(m) |12 Vv é e 8.

r(n)’

We shall henceforth assume that the same r and C will do

for all n e W, i.e. we suppose that there exists r, € N,

[, 7 A e Iy Ca T T AT g e T e T e e AL A I L R A T oY
R A A S AR N A AN i A e T e e e T e e e S e e e e e e e T T -
&’ ) ", ' "a? ¢, Ll L N A N I LT W] « s AL S L . AR A TSRO IR R TS TR S
SN RN AN OIS Wi '\'.- e g AT T T A e e S T e S
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C > 0 such that

n"1412 + Q"(h,d) < Cllbll2
2

Then, for any T > 0,

Esup OXRn? c2car + 21H 92 winew véed
o<t<T 2

and therefore Theorem III1.1.12 and Remark 7 yields the

existence of g € N, q > r, (independent of n) and a

Q_q—valued CADLAG regularization xz of {i:(¢) : ¢e@).

As usual, let xn'T := (X

n
t £) T > 0.

tero,T1’
Let m € §’ and let Q : §xP > R be a continuous bilinear

symmetric f'..ctional satisfying

mig1® + Q4 < Clblly -

A §’'-valued Wiener process W = (W) 5o With parameters m

and Q is now defined precisely as in chapter II (see page
7) and Theorem II.1l.1l. (existence of §’—valued Wiener
processess) remains true for the more general § considered

here (with the understanding that the g in.Theorem I1.1.1.

.r
must now be replaced by q, = min{r : trz is

Hilbert—-Schmidt}). Henceforth W = (wt)t>0 shall denote a
®’'—valued Wiener process with parameters m and Q.

We may, and shall, choose q > r, such that

2
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x™7T ¢ p(o,11,§_ ) P-a.s. VnewWw VYV T>O0and
Wl oe c(o,71,3_ ) P-a.s. VT >0

Let P; denote the measure induced on D([O,T],Q_q) by xPT
and let PT denote the measure induced on

Cti0,71,§_g) < D(I0,T1,F_ ) by W'.

IV.1l.1. THEOREM:

Suppose that, in addition to assumption (1),

(3) Q" (¢,d) ——> Q(,$) VWV ¢ € B.

n->w

(4) lim fnx/\la(qw])l%“(dadm =0 V éed.

n->ao

(5) m"[$) ——> mid] V ¢ € .

n->w

Then, for any T > 0, we have

" n
= P, ==> P,
5 Thow T

PROOF

Thes

Fix T > 0. Let ty £ty <. Lt €[0,T) and
¥y00-.0¥g € B for K € W fixed.

We must show that
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(i) (x: [¢k])§=1 converges in distribution to
k

K
Wy W)y

(ii) pR

p ¢ D € N} is tight on D([o,Tl,g_q).

(i): The log characteristic function of

n K .
(xtk[tllkl)k__=l is:

K
- ¥ n
k=1
T i F .
So SRX/\ (elaMIF(s)) _ 1ar2[F(s)1)u“(dadQ)ds:l
X
* = \
where F(s) : lé_lakl[o't._k](s)tllk.
while that of (W, [Wk])i_l is
X =
K
C(al,...aK) = [:i 2‘ tkakm[¢k] -
k=1

1 p
- S° Q(F(s),F(s))ds:]. Hence
2

ICn(al,...aK) - C(al,...,aK)I =

2 e e vy oW R N TR TR
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K
li ) a0 - mig ) +

k=1
& 1
T \ : p.n — (oD _
so [Inx/\ /_ iaR(F(s) 1) u"(dadn) 2(Q (F(s),F(s))
p=3
Q(F(s).F(s)))] ds| <
X
I Z_ t,a, (4,1 - mg D] +
k=1
Qo
T .
50 5,,,(/\ | Z (1aQ[F(s)1)P|u“(dadrpds +
p=3

1
ﬁ ;IQ“(F(S),F(S)) ~ Q(F(s),F(s))|ds

K
< \L tk|ak||mn[¢k]| +
=1

o

Sg {Rx/\la]’z[F(s)] 13u"(daan)as +

T 1 n
( IQ (F(s),F(s)) — Q(F(s),F(s))lds

° 2

the first term tends to zero by (5). As for the second

term, use (4) to obtain

(6) lim f laniF(s)1)3u"(dadn) = 0
n-> Rx/\ ]? Q
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¥ s € [0,T].

Now, by definition of F(s)

X

IaQ[F(s)ll < \L lallakIIQ[¢k]| Vv s € [0,T].
k=1

3 * .
Define a, := a, sign(a NI}, 1). Then

*

N

X
Y lallaglIReeal = |al
k=1

A
[]

1
X
*
= |anl Z_ a, 9,11
k=1

SO

=

(7) lantr(s)1| < |ant \L a9, )l Vs elo,Tl.
k=1

PIRIAPRENORC A

so an application of (4) gives

K

av——

1i jl \ _* 3 n -
ni“ao x/\|a]’2[ ké___lakltlkll W (dadn) = 0

------
------------------------

L
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and thus
X
\ * 3n
sup fnx/\lan[ /. ak¢k]| u (dadn) < .
nEN k=1
But then

T 3 n L
JO JRx/\Ia]?[F(S)” u (dadl))ds n_); 0

by (6), (7) and the DCT.

Further,

Q" (F(s),F(s)) ——-> Q(F(s),F(s))
n->o

for each s € [0,T] by (3) and since Q and Q" satisfy (1)

we have

Q™ (F(s),F(s)) — Q(F(s),F(s))] < 2c||F(s)||f,2.

Moreover, 52 ||F(s)||f,2 ds < @ so the DCT gives

Sg |Q"(F(s),F(s)) — Q(F(s),F(s))|ds ——-> 0
n->a

concluding the proof of (i).

(ii) By Mitoma, {22}, theorem 4.1 and remark Rl, (see

Theorem A, chapter III page /35) it is sufficient to show

ararats ."-,;-_'.-’ ......
i . ". . -l -v F"-.- ,"l.
L e "i“i '.-";’.A-'J.""-..‘




(a) Voe§: (x*T[d) : n e W} is tight on D([0,T],R)

and
(b) 3k3q:ve>ovf>>036>o:
loll, < & => pesup  |xP141] > @ < p Vnes
0<t<T
For part (a), by Billingsley [3] theorem 15.3 page 125, it

is sufficient to show that V¥V ¢ € §:
(ai) VN»>0qda>o0:

P(sup [ x2[¢]| >a) < N V neN
0<t<T

(aii) v e>o, n>03 de,m 3 n, en:

P{sup min{lx:[M - X: [¢]|,|X: - x:[d»ll} 2 € <N
£ <<t 1 2

‘v’ngno

PSS NE NN

- 0

P(sup X211 - xP141] > @ ¢ ¥V n>n
s,te(0,4) S t n
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a 30 DS

P(sup

X2rd) - x2l1] > @ < ¥ n>n
s, tel(T~5,T) %504 el#1l 2 n °

-

Fix $ € §, and let I} > 0, € > 0. Then,

P als 6 n

n 1 n 2

P(sup |xt[¢1| > a) < — E(sup lxtwll)
¢ telo,T] a telo,T]
‘ 2 2. n 2 on 2

< — E(sup (t“m (17 + Y [$1°))

a t€[0.T]

. 2C
. < — (2" 1$1% + 41Q" (4,42
. a
2 2 2
- < — (T + 4T) cléll; vV new (byl)
. a 2
: 2

< 2 2

N for a® > —(1? + amic )
2
Next, let Ds={t>0: t, < t < t, and t,-t; < §}. Then

P{sup min{|XP[é) — X7 [$1],|X] (4] — X{[$1]} 2 €}
teD 1 2

: < €2 E( sup min(|xP1¢] — xP (1], [XD (41 — XP1é1[1)?
y teD 1 2
-2 . n n 2 n n 2
< € ° E{ sup min{[X.[$] — X, (][, [X. (4] - X (615
. tep 1 2
< €2 minesup [xP_, (411%,Esup |XD_, (411%
tep 1 tep 1
2
< 2

—min{sup ((t — t)2m"1$1%) + Esup |¥]_, 14112,
e tep = 1




p

(P P a5 2 ¥

e tetalala

IA

sup ((t, — t)zmn[¢lz) + Esup |Y: _t[¢1|2}
tep tep 2

2
= —ic,ézm"w]z + 480" (4, 4))
e

IA

2
-2-(62 +abclol2 Waax1 oy an
€ 2

2
<N Vnenit 6+ 4d) < (5—poI2)H7L
e 2

Further,

P(sup 1x2é1 - xP1é1| > @
s,tef0,8) ' ° t

1

2
—=E (sup X261 - o)
e? s,tefo, S t

In

72

1 2
—2(8%n" 1412 + 460" (4,41) < (8% + sdicpél? v
€ e 2

2
snVvaewird?+4d < (—cppl?H7t.
€ 2

Similarly,

P(sup X241 - xP141] > @

2672821412 + 280" (4,40 < 2672(82 + 4é>cu¢||§2

¥ n>1

2
snVvnewmird2+ 48 < (51?72
e 2
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Hence (ai) and (aii) are satisfied for

82 + 48 < (2Q°le-zcﬂ¢||§ )~ ana n, = 1. This proves (a).
2

~
Z
‘ (b): Fix ¢ € § and let €,0) > 0.
A n
4, Then P(sup |x [$1] > €
\ telo,T)
)

< €~ 2E(sup |x2[¢l|)2
- te(o,T]
! < € 22(12n" 1412 + a1Q" (4, 4))
<€ 22r? + amichel? < e 22?4 4'r)c|¢||; (by (1))
., ' 2
-~ 2
- €

2, (2 n
~ <NVnax1if |$)2 ¢ =——0!
n q 2(T2+4T)C

This completes the proof of theorem IV.1l.1.

REMARK;
Note that conditions (3), (4) and (5) were not used in the
¢ tightness part of the proof. Hence we have
- I R :
2
> Let Q",m" satisfy (1). Then, for every T> 0, the family
: {P; : n € W} is tight on D([0,T1,§_o).
x

¥

D
'.f. .......

P JCPCI
ar gt Y.
LA N R
0 o5 S AT
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3

§ Let A : § > § be a linear and continuous, and suppose
' that A and {Tt t t > 0) satisfy assumption AS.l. in
3 ) n_ (N

: section III. For each n € W let ¥ (ft)tzo denote the
- unique solution to

N T

2 dgg = A'glat + ax]

n —
To = §n

; and let ]? = (I?t)tzo denote the unigque solution to

v

--' - '

- 0

: Mo = T

- 1v THEOREM

<

Suppose that, in addition to (1),

g 8)  Q"4,¢) ——=> Qb)) V e

n->o

(9) lim ;nx/\la(]‘zwll:;un(dadn) =0 Vvée
n->m

4

- o2 2

% (10) Jd rean: sn;p max (E| N 2 ENFl 253 < @ ana
>

4

. 5, = ]?oonﬁ_r as n > .

- (11) n($] ——=> mld] V¥ $ e §.

n->o




164

Then, for any T > 0 Jp, € W:

n,'l‘ T
=um) on D({0,T]} )
5 n->m II ’ 'g_pT

’l-altu;

n,T n
where 57" = (S¢)eero,r) 24

T

n

= (Medeero, ).

LA VR PR Y

PROOF:

(1), (8), (9) and (10) imply that X™T =w=> WT on

> n->m

N D([O.Tl.ﬁ_q) WV T > 0 by theorem IV.1.1.. Moreover, (1)
v implies condition (29) of AS.3 in chapter III while (10)
supplies the remaining assumption of theorem III.2.1.,

.. from which the conclusion is therefore obtained.

Next, we shall give conditions under which the processes

n,T

X will converge weakly on D([O,T].Q_q) to a process xT

constructed from a Poisson random measure N on RxAx[0,m)

in the same way as X" was constructed from N". We shall
then invoke theorem III.2.1. to give sufficient conditions
for the weak convergence of ¥"'T on D([O,'I'].Q_p ) to the
solution to the SDE driven by X. B

.

’.

Let m € §’ and let p be a 6-finite measure on
(Rx/\,8(Rx8(A)) satisfying

2

-

..-'.l.h.'.,\ "‘b*ﬁ..ﬁ T
A AR A SAS COR R SRS
Oy N'.\'.V’ . .\3 WARENRY

LY



«

(11a)  mi¢)? + B, ) < c||¢n§2 Véed

(11b) Lx/\ |elaRIé) _ ian(él|u(dadn) < o

where

B($,d) := !lx/\ azl?[«blzu(dad]?): v éed.

Let N be a Poisson random measure on
(RxA\x[0,o),8(RxB8(A)xB8({0,m))) with intensity measure
utdadnidat (a € R, N e A, t 2 0).

Define

Yt(¢) = Lx/\x[O,T] aQ[¢](N(dades) - u(dad]’z)ds);
t> 0; ¢ €9,
and X, ($) = tm($] + Y ().

Since the r, required in (lla) is the same as that of (1),
theorem III.1.12 (b) implies the existence of a Q_q
valued regularization X = (X, ), ., of {;(t’«d)) : ¢ € §). For

each T > 0 let RT denote the measure induced on

D([O,T).Q_q) by xT = (xt)telo,T]' Then we have:




i1 4. THEOREM

Let m"” and un satisfy (1). Let m,u satisfy (lla,b) and

suppose that

(12) S (efaN®) _ 3 _ aprenu®iaaan) ——->
RxA I? T? n->ao

Lx,\(ei”?[“ -1 - iani¢hu(daan) V € B

(13) n($] —> mi¢l V ¢ € Q.
Then, for every T > 0,

n
PT==>RTasn->cn.

PROOF :

Fix T > 0. Since (1) is assumed to hold (Pg n > 1} is
tight on D([O.Tlpﬁ_q). Hence it suffices to show finite
dimensional convergence:

Let 0 < t; <...{tgy <Tand §_€q; k = 1,...,K.

Then the characteristic functions for

T T
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¥
3 . .
& (xtlwll.---.xtxwxn are, respectively,
Chlayr-cerag) =
X

v expl:im“[ \L tea bl +
. =]
: T ia [F(S)] - I n

o faxn 'R 1 - ian(F(s)ip (dadq)as]

and

.:; C(al,...,ak) =
a X
“ exp[iml \L tea ¥l +
A k=1
N

T ianiF(s)) _ , _ ;

[0 faxn 2 1 lal’z[F(s)])u(dadn)dsZI
where
¥ K
‘: ) o = \
: F(s) : /. aklw,tk](s)lﬂk.
¥ k=1
* By (13) it is enough to show that
S

lim exp[ﬁ }Rx/\(eia]?[l“(s)l .

n->

.. g -. .‘ e -. oo St ...':. ."._:b.‘.‘ - " . *\‘ '.' BT TR e T e \. ‘. 0...;.," Ltet ."/ MO -“~ MR

) “.':? .}‘ o "-“'-H. ""J;'.r.-



- 1amr(snm“(dadma{| =

expB'g slx/\ (elaN(F(s)) _ , _ ial}[ms)lu(dadq)ds]

now, F(s) is piecewise constant, i.e. there are

0 =38, <...< 8y =T and ¢;,...¢, € § such that

¢j if S e [sj-'l'sj) j = 1,-.-,“ - 1

¢M if s € [sM—l «T]

(eiaQ[F(S)l -1 - ian[F(S)]) =

M~1 .
< 1a]’2[¢j] _ .
/. (e 1 1a]’2[¢j])l[s.

=] J
iani¢,]
AL

(s) +
-l’sj)

-1 - iaQMMl)l[sM_l'T](s)

ianiF(s)) _ 4 _ ian(F(s)1u"(dadN)as =

-1 - ia]’2[¢j])un(dad]'2)
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iaDi¢,]
(5)+Illx/\(e Ny -1

. n =
- 1a]’2[¢M])u (dadn)l[su_l',“(s)]ds =

ianié.l
Jnx/\ (e o5l _ 1 - ial?wj])p“(daarp(sj - 85

Ty
=

2 gue e ute g

(by (12)

iaR(¢.1]
Lx/\ (e Ntesl _ 1 - iaNlé 1ru(aadn)

(Recall that fnx/\ «--u(dadl)) is finite by (11b))
T i .

JO gkx/\ (ela]?[F(s)] -1- laan(s)l)u(dadQ)ds,
concluding the proof.

Let 3'0 be a §’'—-valued random variable and let

§= (§.); 5 denote the unique solution to the §’'—valued

SDE

djt = A'Etdt + dxt




Ny 00, TEM B, AR o e T g 1 i S A Bl e 2 T 6 W T P A e ey hiny B piuialias i st i -

. 170
L o
;,- §o §
Cd
IV.l.0, THEOREM
yl
' Let m" and p® satisfy (1), let m,p satisfy (lla,b) and
-«
.ﬁ suppose that (12) and (13) hold. Suppose further that
N (14) 3 r € ¥ : sup max{E| n"ir'E" oll,z_r} < @
« n
and that ===> £° on d__.
% §n n->wm 5 r
; Then, for any T > 0, J p, € W :
gn,T === g T on D([0,T1,§__)
n<>w Pp
- where
.. T _
§ = Bedeero,r.
PROOF ;
Let T > 0. Recall that q > r, is such that the canonical
r
injection 2 is Hilbert—Schmidt from ﬁq > & . Let
q rs
: {¢j : j € N} be a CONS in Qq consisting of elements of §.
- Then note that
[
T,2
Esup [XP'T)% =
0<t<T  °© q

stvteta ]




e s,

J
e
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L

E(sup }_ (x:'ij])z) <
i=1

a0
N\ 2. n 2 n
/. 2(T“m [¢j1 + 4TQ (¢j.¢j)) < (by (1))

2

®

\ 2
C(T"v4T . =

) 2eivan gyl

r
22
2c(T¥ am) | o lgs V nem,

(where |[|.[ ;o denotes the Hilbert-Schmidt norm) i.e.

ITI.(29) of AS.3, chapter III is satisfied. Moreover,

xn'T,xT € D([O,T],Q_q) (P—a.s.) by assumption and x" and

X are §’'—valued (weak) L2—semimartingales. By Theorem

Iv.l.4, (1), (lla,b), (12) and (13) imply that

xMT === xT on D([0,T],$__). Since also (14) is supposed
n->wm 4

to hold, the assumptions of Theorem III.2.1. are satisfied

and the conclusion therefore follows from this theorem.

-Next we shall give conditions for the weak convergence of
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a sequence W" of $’'—valued Wiener processes to another
$’—valued Wiener process W, and then employ these

2 together with Theorem III.2.1l. to give the corresponding

@j weak convergence result for the solutions to the SDE's

driven by w? and W, respectively.

Let, for n € N, m" € ¢’ and let B" : $x¢ > R be bilinear
symmetric functionals satisfying (1). Let wh = (W:)t>o
denote the §’'—valued Wiener process with parameters n”

and B". (1) and Remark 7, chapter III imply that Wy € Q_q

» ¥V t > 0, for some q which does not depend on n € N.
R 1V,1.6. THEOREM *
ﬁ—

Suppose that, in addition to satisfying (1), B" and m"

- satisfy

- (15)  B®(,¢) ——> Q(,¢) V b€

n->m

: (16) m?{$] ——=> ml(d] VYV ¢ € §.

n->aw

Then, for each T > 0, we have

e

AT wm=> W' on CC10,71,§_o).

n->m

W

DTl

b

where W''T = (Wg)telo T] and W, is the §’'-valued Wiener
14

process introduced on page /$3,

)
)




§ % RO

Tit.!

DAR
R

e

14y e

.:ﬁl-’?‘,-’u’ 3

PROOF:

We must prove that

Vv t>0 (W™T : new is tight on c(ro,T1,3_

vV 0<t g...gtng'rvqxl,...,wueﬁ:
n,T N T N

(W' (9.1 ===> (W, [P.1), ..
tj 373= Lo tj 3771=1

The tightness part is proved in the same way as the

tightness part of theorem IV.1.1.

Now, a calculation shows that

N
.\ n,T
E exp(i /. a.w (9.3) =
Jts J
=1 =
N 1 XN
.\ n _ -\ § n :l
exp[:l /. tjajm [wj] » 'yl tjtkajakB (¢j,¢k)
i=1 J=1 k=1
—_> (by (15) and (16))
n->w
N 1 AN
exp[l\ tamwl-—-\ \ ttaaB(¢,¢):|
VAR B MG 2 L. L. 3Kk Yk
)= j=1 k=1
N
= E exp(i 2— ajwz [Wj] ). .
=1~ 3
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n n . .
Letting Q = ”?t)tzo denote the unique solution to the

SDE on §':
dl?: = A'rz"‘:dt + dw:

No = M

= L i
and ]’2 (r?t)tgo be the §’'~valued process introduced on

page /%3 we have

I HEQREM

n

Let, in addition to (1), B"™ and m" satisfy (15) and (16)

of theorem IV.6, and suppose that l?n and ]?o satisfy

(179 3 rew: swpmaxiE|N, 12, EIN°I_,} < o and
n
===> on §__.
Ma =52 1 r

Then, V T > 0 § p, € W:

n,T T
]‘2 ’ :j:; ]? on C([O'T]:Q_pT)'

n,T - n
where N™' 1= (N cerq,r)*

PROOF ¢

T TR TR TE TR
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X By (1), (15) and (16) and theorem IV.1.6 W"'T ===> W' on

N .f, N>
’ D([O.T],Q_q) ¥ t > 0 where g = min{p 14, is

Hilbert—Schmidt). Moreover (1) implies (29) of AS.3 in

LN e IR A B

chapter III and (17) supplies the remaining condition of

theorem III.2.1 (recall Remark 9 of Chapter III).

As indicated at the beginning of this section, Kallianpur

and Wolpert ([14)] used Poisson random measures defined

:-; via intensity measures on (mx X ,8(R)x8) where (¥ ,8) is a
- suitable chosen measurable space, rather than by
ﬁ mean/covariance measures defined on (RxA,8(R)xB8(A));
- A € 8(9’) as we have done it here.
It is therefore natural to address the question of when
; Kallianpur's and Wolpert's framework is contained in the
) one we have presented here. The following result gives a
; (partial) answer:
1 PROPOSITI
Let X be a 6§ —compact topological Hausdorff space, and
suppose that elements of ¢ are continuous functions on .
- Further, suppose that
‘ 1) b :xeX )@,
A
L
A
» where, for each x € ¥, 8x is the linear functional on §
%

”,"a
R Rl

.
LA d

',.
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given by

§,191 = dx) V éed.
Then, for any B < ¥ closed,

6, : x e B} e 8@).

REMARK

The conditions of the proposition are satisfied e.g. for

¥=8%ana § = 9.
Note also that a sufficient condition that (18) hold is
that convergence in the §-topology implies pointwise

convergence for functions on X .

PROOF OF PROPOSITION IV.1.8:

By G—compactness of X » there exists a sequence

Kl C.K2 C e C.Kn<: o of compact sets such that

X = égl K-

Let Bc X be closed. Let A = (& : x € BAK_).

Since {6x : x € B} = J;ﬁ /\n and 8(§')is generated by the

weakly open sets in Q', it suffices to show that /\n is

weakly closed for all n € N:
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Let n € N, and suppose that ‘8xx)d€A is a net in /\n

converging weakly to some I € ¢’'; i.e.

S 11> Nib1 Vel

X

Now, &, 141 = dx) V ded.
o

Since x, € K. N B V '€ A and K,NB is compact there is a

subnet {x : /3677} which converges to x, say, in KnnB.

Since each element of § is a continuous function on X ¢ it

follows that

éx (] = d(x ) > d(x) WV éded, i.e.
£ £

nté1 = 1ﬁm 6,;3[¢1 =¢(x) V ed.

Hence ]? = 6x' -To) ]? € /\n since x € Kn(]B, and therefore

/\n is closed.

Taking B = X in the proposition, we see that

A € 8(§’),where A := {6x : x e X ). Define a map

@ : RxX x[0,0) > RxAx[0,®) by

o(a,x,t) = (a,éx,t).
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It follows from the proposition that
@ is B(R)x8(A)x8([0,0))/8(R)xB()¥ )x8([0,00)) measurable.

Similarly, the mapping T : Rxx -> Rx/\ given by
Ua,x, = (a,éx) is

B8(R)xB(A)/8(R)x8(¥ ) measurable.

So if m" € §’ and url’ is a 6~finite measure on B(I)xs(x )

satisfying
m"1412 + 0%, < clélZ ¥ n e W, where
. |

Q?(%w) := Inx* a%(x)(’(x)u?(dadx): ¢, 5 e

and Ni’(dadxdt) is a Poisson random measure on Rxx x[0,m®)

- with intensity measure u;(dadx)dt, then

Nn(dadet) 1= Ni‘ 6~ ! is a Poisson random measure on

o RxAx[0,0) with intensity measure

un(dad]’z)dt, where p" = u?a 71,

and Q" ($,P) := Jlx/\ azmwnmlu"(dadn)

i’

- ‘Rxx a%$ g (x)p] (dadx)

. ) - P S I T T T i I LU NI I SR
B L RPN N AT AL T Rk S TN Vs L T T T T T A IR A I VL O e I P TP TP T P U P AL I 4
P I N LI I O SN . 0 N o R S R S R A L, W T 0t < O T T S T TV IR AR L R
a\f"l".’{..‘.n'jq"..'"-."l.’.\' ORI *;5‘ \,(‘ <.~ '.;." . ‘--. -'_‘-_‘-., RRO ",".:",‘\’. SRS ~‘,\'. -.‘ o e . ottt %,




¢ . . - Oy
B v e . . - L SO N g Pt gy s SN TAAARTI LR DN e i Rk
B T e P T T ¥ 900, TR AT B | TR s i o sl AN SV i den

Y

179

= ol V b9 eB.

So that Q" together with m™; n > 1 satisfy (1).

Therefore, under the conditions of proposition IV.1.8, the
Kallianpur and Wolpert framework can indeed be represented
in ours, and in this case their weak convergence result
([14]), Theorem.3.2.) is analogue to our Theorem IV.1l.3.

. [Recall from Proposition III.1l.13 that the semigroup

{T, : t > 0} with generator —L considered in [14] satisfy
‘ our assumption AS.1 in section III.]. However, one would
still have to verify the validity of the assumptions of

Proposition IV.1.8. for each of the examples given in (14].

\ ORI P PR )

1l.2.

Next, we shall apply our results to giving a rigorous

; formulation and investigation of a model recently proposed

by Wan & Tuckwell [30]:

In order to study the behaviour of the difference V(t,x)

[ S SPL

at time t between the so—called resting potential and the

O
P

actual potential at point x on the surface of an
infinitely thin cylinder shaped neuron which receives
synaptic stimuli of the finite spatial extent ei at each

of N sites Xy Wan & Tuckwell investigated the model

f formally given by
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v 2 & aw*
—_— -V + + hix;x.,€.) (X, +3.—)
It axz fgi i’71 i /31dt
(19)

V(0,x) = 0 V(t,0) =0 = V(t,b); V t >0,

where

h(x;xi,ei) = 1 (x)

(xi_ei 'xi+€i )
(xi,ei > 0 fixed for i = 1,...,N)

and where Wt; i=1,...,N are independent standard Wiener
processes. o and/gi represent input current parameters

and the neuron is thought of as the interval [0,b); for

some b > 0.

To see how this model can be given a rigorous
representation as a §’—valued SDE, let H = L2(10,b]) with
inner product denoted by <erodye Let L denote the operator
I - A (A = Laplace operator in one dimension) with
Neumann boundary conditions at 0 and b. Then L is a
densely defined positive definite selfadjoint closed
linear operator on H and admits a CONS

{¢j : j =0,1,2,...) in H consisting of eigenvectors of L;

L¢j = \j¢j; j=10,1,2,..., where \j =1 + and

b2
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!
.2 jrx
: L ()2 cog(=—) if 3 > 1.
b b
Further, A := ~L is the generator of a selfadjoint
contraction semigroup {'I‘t : t > 0} on H whose resolvent

1

R(\) = (NI — A)” © is Hilbert-Schmidt on H.

Letting
F:=¢ped: X -MY|y<o® VreRr)
and defining norms ||.[|.; r € R on § by

r
IOl += I = Ml bed
we put § equal to the ||.| -completion of §.

Then § = Q Qr and if T denotes the Frechet topology on
® generated by {l.l, : r e R} (i.e. the projective limit
topology on $}), then (§,c)<>H<>§’ (where §’ denotes the
strong dual of (§,r)) is a rigged Hilbert space. Since

A =-<L, and L is a densely defined positive selfadjoint
closed linear operator on H we see from Proposition
II1.1.13 that A and {Tt : t > 0} satisfy AS.1 of chapter
III.

Moreover, {¢j : je Nl <@, § « Dom(L) and per
construction of § every element of § is an infinitely

differentiable function. Let N € W fixed, and for each X

i =1,...,N1let ; € 9'. Let v;; i = 1,...,N be V-finite
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measures on R satisfying
j aly (da) <o V i
R i ’

and let p be the measure on Rx/\, where

A={g; +1i=1,...,N}, given by

N
: b= ‘T:v.xé ; where 6 is the point mass atg‘.
g L. iTTE §
P i=1
g Define
: Qb0 = g n AP NISINIIN@aAN);: .8 € T
; N
= ) aly, (da) ¥ . [$)E. )

N /. m@Y §ilels;
% i=]1
N

then Q is a continuous, bilinear symmetric functional on
3 ¢, so for m € §’ given, let W = W, be the $'—valued
4
y (actually ﬁ_q valued for some q € N_; c.f. Theorem
4

I1II.1.12) Wiener process with parameters m and Q.
: Consider the SDE on §’:
= (20) dl?t = A'Qtdt + dw,, ]‘20 =0

2

Now, W is a weak Q'—valued continuous L“—~semimartingale,

and since A and (T, : t > 0} satisfy AS.l there is a

unique continuous §’-valued solution (from Theorem
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III.1.5 and Remark 6) given by

N 4] -f W [T, __Adlds + W [$] V e

(with‘probability one).

Choosing §i = <h(.;xi,€i),.>H vYi=1,...,Nand

m=m€

50 55 = fn a?y; (aa),

Mz

1

[
L

(20) is the representation of (19) as an SDE on §’. To see

that this is indeed the case, expand

-
Ma

by b

j (converging in (¢,))

(N
]
o

(recall that ¢j ed Vviewm

Then (writing ]?f for ]?t and W

N for Wt)

[0 3]
e N\ € €
ngter = 3 (f; WSIT, _cAdslds + WCldsD) <bidi>y
3=0
(converging in Lz((),P,P)).

Define for x € [0,b] and n € W

n t € 14
vglt,x) = (fo WolTy_gAbslds + Wldsy(x).

T e “hyit=s) g e
= ) (fS =nge Wgléylds + WELH 114, (x)

T TR TR SRS
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- 2
" Then, noting that sup [$:x)] < (Y2 v 5> 0 we
x€(0,b) I b
) find
\
&
S
X n
- (21) E sup II -\;€e W_l¢.lds +
L o<x<p /0 3 s°73
=0 ==
N e
. W . .
t[¢Jl||¢3(x)|
<= —\;(t—s) 2
\ ’t _ 3 € € 21/2
- < )a E| ) e Ws[¢j]ds + Wt[¢j]|(b)
3=0
and applying It8's formula to the term inside each
absolute value, we get
n
— —\;(t-s)
\ st )‘J € €
E e W w . + W . .
/[ ggg(b | o \Je s[¢J]ds t[¢J]||¢J(x)|
J=0 "="=
. n
. — -\ (t—8) 2
2 \ It Ay € 1/2
< E W . -
£/ | o © d S[¢J]|(b)
J=0
n .
0 -\;(t—8) =\j(t~-s) - 2
- 2_ E| 53 e 1 mglé;lds + fg e dW§[¢j]|(-—)l/2
50 b
2
: (where W€ := w€I¢.) - sm [4.1; 3 = 0,1,...)
) s H s j Sme j H J ’ g o0
4
. 2 15 {-‘- ¢ ~hyt—e)
: < (=) Ea(so e mgl$;1ds +
. b
. =0
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“A:(t=8) . 1/2
t b | € 2
$° e dwswj])]
2 2 =\:(t=-5)
- 1/2 \ [ t i 2
= (—) ( .
: A fo e melé;1ds)® +
=0
~2)\;(t=5) 1/2
t 3 €
jo e Q (¢j,¢j)d{,
2 s _ —\st
: = (5)1/2 \L Enewjlzsz(l —e 1,2,
3=0
1 a -2xjt e 1/2
—(1 - ($.,d.
' ~ e ) 4>J.¢J>]
5 j
X 2.2
73
but )‘j =1 + b2
N
and m€[¢j] = \Lp/j_(h(.;xi,ei),(bj)H
i=1

R e R

N
T X.+€, 2 JTx
2_‘(1 S 11 (Y 2008 (—yax for § > 1
: N
- -1/2 .
. L%/ib / 2€;, for j =0
5 i=]
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L)

s & ¥ B

Also, for j > 1

e N2 [(5*% 2172, dTx 4,
QT (d5b5) = )] U (—)+/ “cos ( )dx

8b N
< ¢ Y 42
= 252 /[ i
=1

(recall that/_a,g = IR ani(da))

N 2
LT i

i=1

while @%(d,,b.) <

n
2_ Enewj]z\;z(l ~e 1,2,

n

< CONSTANT + ) [
- L
i=1

N
\
( )7L+ ) +
m32 L 4| 2
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<o WV nenm,
and combining this with (21) we see that the series

o
\

-A\;(t—8)

| j e
-\

ﬁa,ZE:Sb o =y

worp 1as + WELH 1] 145 0x) ]

is convergent (P-a.s.).

But then the sum defining Vg(t,x) is absolutely convergent

for all x ¢ (0,b] P—-a.s., and hence

ve(t,x) = lim vg(t,x) exists for all x € (0,b] (P-—-a.s.)
n->a
for each t > 0.

Moreover, there is a constant C = C(t,w) such that
sup sup |v3(t,x)| <C (P-a.s.) V¥ t>0.
n€MW 0<x<b
Therefore, the DCT gives
n
<V (t'o)'¢> -—— <V (t,.)'¢> P-aos.
€ H n->0o e H

for each t > 0 and each $ € Q.

But <Vg(t,.),$>y =

VG TIPS TR S T T T T I 5
oo NG _“..\-._. \.
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LA

N
;Lo (fS wsl'rt_sujlds + wf:ubjl) <bidy>g

t2ca,p,p)
———————— >Neldl: bed, so

Tie e i

- €
X WValt, ), d>y = Qtw], P-a.s.

for each ¢ € § and t > 0.

To complete our argument that the process given by

Ug wgt-rt_saq;j}ds + w§[¢jl]¢j(x) | i

g

Ve(t,x) =

\

V x € [0,b] P—a.s.

Dl el s

is the rigorous representation of the process formally
given by (19), let us see that Eve(t,x) and VarVg(t,x)
A actually agree with the formulae found in [30] by a

heuristic argument:

First we note that a simple computation will verify that,

for each x € [0,b) and t > 0O

12(0,?,P)

vgtt,x) ———————— >Vg(t,x)




@
-k ) (t
: EVg(t,x) = E f‘o( o wswt_sujlds + Wt[¢jl)¢j(x)
@
J .
[« 1)
' — =\;(t-8) ,
b = \ (t 3
3 B L_ ‘0 e dw8[¢j]¢j(x)
g J=0
o
® .
: L(O e m{$,1dsé, (x)
: o _
] N -— -x t
g = ) mienJta - e Igm
v
..‘
o I 2 00, (x,5€;) it
N =\ij jl'i(l_ j)
y VAR X\ ¢
2 i=1 =0 j
. which is formula (8) page 279 in Wan & Tuckwell {30].
j:: Here, as in [30],
:
- - X.+€
<& - |1 ¢j(x)dx.
. Next,
: @® @®
-\;(t—=8) .
: VarVg(t,x) = E) 2 Sg e 3 oW [, ]
: f s
7
Cad
:..7::.. . -‘-’.f;:;-‘?.f:}'-' a0, :{; ,:::;--. ‘:'-i -“:;';'- ..::;-.:-,'_'_-.;-\’:-...-.._.:::.:."..:"_‘":;_.:.'_.‘.:_:_..-..::E.‘::.‘-:..- ‘. -
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t -\k(t‘-S) -
So e AW [ 14, (x) ) (x)

2 =(\s+\, ) (t=8)
\ 37 Mk
fo0 = e Qb3r by dsdy (X (x)

O o
— Q(é., b)) = (A\s+)\ )t
= ) Z—‘j—Lﬂ(x)ék(x)(l -e 37k,

N o
- \_/s? N\ Z‘ ¢j(x’¢k(x)¢j(xi7€i)°k(xi’ei)
i
—ONsHA It
(1-e I k7,

which is formula (10) in (30].

Wan & Tuckwell proceed to compute the limit as ei >0
¥ i=1,...,N in such a way thét eia(i -> a; and

ei i > bi > 0 of Eve(t,x) and Varve(t.,x), and they find

that these limits correspond to having point stimuli (i.e.

h(x,xi,ei) replaced by 6

xi(x)) at each of Xg4 i=1,...,N.

This result may be obtained from theorem IV.1l.7 in the

following manner:

For each i = 1,...,N take Vi = biei—lui’ where My a is

finite measure on R with compact support.

&

.-‘: . - A m- . -4.--.---... sq‘-\‘-\-.\\\\\‘\s’--\\‘1
TN B U S e A R T S Tl A e e e e, '~ ', A AR A R RA AR AN KIS
e e T e e 2 O A S R RN, S L DO
| SRS ‘.'\ 25, ".- AN T T N AN TS e N TN T _n'\..\.'i_. AN, A SR A L S OGSO RN,
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| Noting that every ¢ € § is a continuous function on [0,b])
t
' (recall that § < Dom(L) and that L is a differential
operator) we let ei - 0 in such a way that eia(i > a;.
. Then
N
: lim m (] = lim  } oi<h(.3x;,€;),$>
2 € l_T1 i’"i H
: = lim [_o(ij $(x)ax
- :
": =/ 2ai¢(xi)
4 i’l .
N
X = \
: ) zaiéxim
i=]
and
-* N
: — x.+€.
: lim 0%(¢,4) = lim \L/sft J 11 yxrax)?
N
- x.+€,
= 1im > b2e72(( 1 igxrax)? /azu-(da)
\ e--)O-L- it X.—€ R 1
N i i=] i i
. N
2 2 2
- 12_ 4bih(x,) JR‘ My (da)
=]
:-. LR I AL LU Rt R T L T L O i e R T e R R RO Ry

A I

v e e Y.
e SRS
A D

L I G e e A R S e i S i At TN e e, I AR
e YN A RN NN i T i LT S L N S T
» A ) . L L - By 3
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X
Y oanddd, Ml) I.azpi(da)
&
Also,
Imgt112 + 0d,é) <
X N
i=]
N .
2 2
= (‘2_. 2e, | o(;| + 12_ o, 2rnend
=] =)
< consTaNt |[$2 Ve,
since eia(i > a; and ei -> 0; where CONSTANT is
independent of ei, so condition (1) of section 1 is
satisfied. Since the initial condition is zero, theorem
IV.1.7 yields
e,T
n='" s> Q oncuo'rJI_ VT>0
€;->0
for some dp 2 0. |
Here, ]’2 - (Qt)tgo is the solution to (20) for
_N..
Q(d,d) = 4b18 [¢1 and
1-1
et g 2 e P




PR Larie

»

P BESRR

AU AP

o e
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Now, take Inazui(da) = 1. Then

N @
\ v <bsd> b (x,) -\t
Enttw-\Lzai}_ g 1o Rl LSS F LN bes
i=1 jao \j :
and
N ® ®
var), (4] = Z 4b§\L 2— <brbs>p<dibopds (x4, (x,)
i=1 jao k=0 \j + \k
-(
(1 - e \j"‘\k)t).
o
Since V(t,x) = /\_ Qtijj(") (in Lz(O,P,p))
J=0
we get

N ®
— — é.(x.) -A\;t
(22)  EV(t,x) = \L Zai\L —i—i¢j(x)(1 —e 3,

and

e T e e e e e e T o e e e e e T e T
:-\:‘_ RS 5 AT 7.’ ...:_,'." .'.\.'._.‘. A .)\;_ .}..".".& .':h; \‘;\ RS '-‘\'Q‘ A A ‘h‘.:!..-~. ATy .\'.":_ \f\.}'h o d’!‘n".-




for point stimuli at xi;i = l,..0sN.

In practice, equation (20) is likely to arise as a limit
b of equations where the noise is not a Wiener process, but

rather a process generated by a Poisson random measure in

‘: the manner considered in section 1. As an illustration,

: take p" to be measures on Rx/\; where

N

LA

= A ={f :i=1,...,N) of the form

Xa)

M

" n_ \ n

N V] é_-vixégi, where

N i=1

i:

LS

by for each ne ¥ and i = 1,...,N V'i‘ is a {—finite measure
§ on R such that

N

' sup ;;azv?(da) < C< vV i=1,...,N.

. n€EN

)

‘; Let m” € $* converge weakly to mg. hen there is r € LS

& such that

: 12”4112 < k1412 V nem. '
i And since

\ 2 2 2 2 2

; 15,06112 < 2120012 < 2e)2] 4112

:

: we get

"

Ry N T e e S e e e T S T :

e e < e N T N O Ly
ST ICNAIEN AT IERL 3 T 283 NN MENEIENT ) ¥ . : R
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ImP111% + Q"(,¢) =

N
ImP1]2 + Z j,azv;'(aaugiwnz <

i=1

coNsTANT [|4]2 W n e W; i.e. (1) holds with r, = r.

Let xg; n > 1 denote the §’'—valued processes constructed

from m" and un on p. /53,

Letting §n denote the solution to

n
t

n

d§: = -L’ t

+ 4dXx
n
S0 =0
Theorem IV.1l.3 gives the existence of Pp such that

n,T e,T
=== on D([O,T] § )
5 n->w R TRy

provided that

(24) lim Lnlalav?(da) =0 Vi=1,...,N
n->w

and

(25) 1im /azvn(da) =32 N i=1,...,N
o /B 1 /41 ' T

i.e. the previously considered process l?e can be thought
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3 . . . . .
Q of as the limit of solutions to SDE's with Poisson
"~
i generated noise.
3
T Physically, this type of weak convergence can be thought
*\
2 of as a situation in which the individual current stimuli
! of the neuron arrive very densely in each small time
ﬁf interval so as to create a total contribution to the

.
[]

electrical potential which behaves like the continuous

Wiener process.

-
.
e

.

Or the other hand, if (24) and (35) are replaced oy

lim jn (e'®Y — 1 - jay)y](da) =
n->

jn (e!® — 1 - jay)v{(da) for all y e R

then theorem IV.1.5 gives

'T === e'T

n
T
g el on D([0, l;@_p )

where §€ is the process with mean functional m€

constructed from the Poisson random measure with intensity

€

™=

foégi.

1

[
L)

This latter convergence can be thought of as modelling a
situation in which the individual stimuli received by the

neuron do not tend to arrive very denselylpacked in each
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small time interval, but rather tend to arrive clustered

at random points of time.

-Let us conclude our discussion by briefly summarizing

what we have obtained:

By proposing to represent the arrival sites of the stimuli
of the neuron as distr:butions € @' rather than by points
x on the surface of the neuron we have given a rigorous
representation (20) of the Wan & Tuckwell model (19) for
the behaviour of the electrical potential in an infinitely
thin neuron which receives stimuli of a spatial extent
described by the distribution §, = <h(.;x;,€;),.>, at each
of N points. -We wish to emphasize that it is not possible
to incorporate the Wan & Tuckwell model into the framework

used in [14]).

We have then exhibited the solution as a §’—valued
process ]]i, with the interpretation that for suitable
testfunctions ¢ (describing our measuring device) Q§[¢]
represents the measured voltage potential difference at
time t. We saw also that for the Wan & Tuckwell model the
electrical potential Ve(t,x) is well-defined at each
point x of the surface of the neuron and Ve(t,x) is

related to ]’23 by

rzf:wl = jg ve(t,x)¢(x)dx (P—-a.s.) V¥ t > 0.
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By means of Theorem III.2.1. (disguised as Theorem
IT1.1.3) we then saw that ]?e can be thought of as the
limit in distribution of processes driven by
Poisson—generated stimuli, and further that (as was
heuristically obtained by Wan & Tuckwell), as € = 0 in an
appropiate manner, ]}? converges in distribution to the
process ]?., which describes the evolgtion of the
electrical potential when stimulation occur precisely at

the points xi;i =1,...,N, of the neuronal surface.

Moreover, Theorem III1.2.1. (in the form of Theorem
IV.1.5) permitted us to give conditions under which the
solution for Poisson generated stimuli would converge to a

process still driven by Poisson generated stimuli.

It is our hope that we have hereby illustrated that the
proposed approach of considering the arrival sites as
given by distributions (rather than by points on the
neuronal surface) together with Theorem III.2.1 and its
consequences, provide a framework and a tool which is
ample and powerful enough to permit the analysis of many

aspects of the neuronal models.

For more general models of neuronal behaviour than (19),
it may be of interest to estimate the mean functional m
(which represents the mean arrival rate of stimuli) as
well as testing hypothesis about m.

The results of chapter II should be useful in this

.........
-----
K -
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& situation, which we hope to investigate in the future.
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RAS SE

Let us briefly recall the definition of a countably

Hilbert nuclear space:

DEFINITION

Let § be a linear space upon which a sequence of real
inner products <erpe> i N EN is given with the property
that for all n,m € N we have:

1f {tlbk}::l $® is a convergent sequence wrt.

- 1/2
I.nn 1= <oy dp

137 .

, and ‘%*& is cauchy in [|.[l,, then
{¢k}l:=1 is convergent in |.| .
Let T denote the Fréchet topology on § which is generated
by the norms |.|| ; n € W.
o Then § is called a countably Hilbert space iff (§,z) is
complete.

(note that (§,z) is metrizable by the metric d given by
: @ M-,
2 A TR T

n=1

$.9 € d.

(§,t) is then complete iff (§,d) is complete.)

L R N A

' Let (§. {<.,.>n : n € BH)) be a countably Hilbert space
“ and let ||.|n g= <.,.>:rl,/2. Then we may, and shall

S henceforth, assume that

: Il < Hél, Vnem Véeid

- AU RL I T Sl Pl S LA WA
A I I A A "o Ca g
N A A Y v A

A
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For each n € W let § denote the completion of § wrt.

Hell Then 3 > 8 Vm>nana @ = N 9,

n>1

DEFINITION

A countably Hilbert space Q is called a countably Hilbert

AT A A AN AN T e A Wi

nuclear space iff we have

Vnewdm>n:
the canonical injection {.:‘ : §m > in is a Hilbert-

Schmidt operator.

AOIEGIRS SN P

Let §_  := §’ denote the strong dual of the Hilbert space
9, and let ||.||_, denote the Hilbert norm on 9 . Let @’
denote the strong topological dual of §, where § is a

countably Hilbert nuclear space. Then

3 - LQJ' §_  with the (strict) inductive limit
n

topology.

Moreover, on either § or §’ a sequence is weakly
) convergent iff it is stongly convergent. The &-—field

generated by the strongly open sets in §’ is the same as

Fam el
ae 8t

that generated by the weakly open sets and it is therefore

unambiguously called the Borel s-field of §’, and

denoted 8(§’). We refer to Gel'fand & Vilenkin [ 6],
chapter 3 for the proof of these and other properties of

countably Hilbert nuclear spaces.

. . a* " o~ o* PR S S R N P, < -". -'_--. ‘-': -':-' S e ‘Q.:.n."h > ‘\q‘ ‘f ‘w ‘n' ‘h. ‘-':-‘ “.‘\"-‘ «
..’ ‘-".. . '»'.'.' - "'- R0 \I‘-' e .." e ..'_ R - -\'. T -"_- o ".\..\.\-:.- & -($$$.l\,\;\.h\)\.l ‘.-\f.‘.:‘ o'
° LI * . e \ N ) P )
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DEFINITION
X A triplet §<» Hc> §’ where

(i) § is a countably Hilbert nuclear space and‘i' is

- the strong dual of §
3 (ii) H is the completion of § wrt. an inner product
' <.r+>g on § which is continuous in the §-
.ﬁ topology
f is called a rigged Hilbert space.
A
>
? A linear topological space can be a countably Hilbert
f nuclear space even if its topology at first appears to be
; generated by more than countably many seminorms:
Let § be a linear space upon which a family
{<.,.>r : r € R} of inner products are given with the
property that
s Héll, < Hélly, Vrser véed;
< where [[¢ll . = (<4, 6212 v ¢ e .
- Let § # AcR be any subset with the property that
2,
2
3 (a) VreRJseA:s>r.
. AT LR A S SO St G A N S o R Ay WAL 'v. '~“--'.“".. " ‘-.-\.-'.'.\"g'--.'.'.'v"_‘-‘.'.'.‘-~ ST ”‘~;'..;-"-'\-
f;;:?:$§$;ﬁ§$§";$":S%’:)ﬁitis.#-:;u;&zﬁjxf\ixgtﬁs \?:éy’\;\*ufuixj\f\ ~ ’sisl}ix o xf.ngsiuiti\f il N
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PR E S Al AN

-

Let I denote the Préchet topology on § induced by
(h.0, : r e R} and let T, denote the Fréchet topology on
® induceda by {]]., : s € A}.

ZHEOREM 2.l

¢ SR S

DN

Vel
s
LA LR

—w

(18~ /(18 ana T,=71,

r€A reR

where § := |.|, -completion of §.

Moreover, if

(b) VrenJsenm with s > 0: the canonical

injection {,; : §, > §_ is Hilbert-Schmidt

. and § = () §_

. ren

then § is a countably Hilbert nuclear space and T= Ty

PROOF :

Clearly, /) §r <
r€R

ARX

r€A

Conversely, let ¢ € ﬂ ir' For a fixed t € R, pick
r€A
s €A, s > t. Since

10l < N0, YV ¥ed we have§, < 3,.

e LI YOI N VA SL VA SK Mt e AT T T AT T e T AT AT
N N P LR LN L LR SRR X W M A A e e et CAAERAIORE AN RN
N R NG N NP NI 31 S o8 . - o
R NOR SRR LS SV, 3535
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" But de (VG =>¢ed ., so0ded,.
r€A
: Since t € R was arbitrary,
18, < ()8,
i reA " rer " °
. Next, the class of sets
; Cp:=((ded: ““’fi < €, i=l,...,k}:
- k € .' ri € A and ei > 0 V i-llooo'k}
- forms a complete neighbourhood base at zero for Z;,
" while the class
4“ C:e= { {¢ e Q H “¢||r £ ei ’ i'l,...,k}:
; i
. ke-' rie‘, and Gi> 0 Vi-lycoo'k}
f is a complete neighbourhood base at zero for Z. Let F € C.
” Then
o
: F=($pel: ﬂb“ri < €, i=l,...,k} for some k € W, € > 0
3 and ry e R,
By (a), for each i=],...,k we may choose s; €A with
8; > r;. Then, for every ved:
3 l’lri < l.ﬂ.i. and hence
N
‘
l-*-"' LI '$ “ - i A L ) AU R \ LY . el B wt et ety "
R A R L




Fo(yed: ||¢||si <e Vi=l,...,k} €cC,,

i.e. every r—neighbourhood contains a g—neighbourhood.

i.e. every UT-open set is Ty-open, so T is weaker than .
CA. Conversely, C, = C, so every CZ,-open set is T-

open, so [, is weaker than T.

Finally, if § = N §r then § is necessarily complete,

hence countably ;frbert, and therefore countably Hilbert

nuclear by (b). T = Ih follows from the first part of the

proof because W satisfies (a).

- An important class of countably Hilbert nuclear spaces

is constructed in the following manner:

E Let (H,<.,.>H) be a real separable Hilbert space and let L
. be a densely defined selfadjoint closed positive linear ‘

operator on H satisfying:

—2r1

(¢c) Jr; €R: (\I+ L) is Hilbert-Schmidt on H

(c) implies that there is a CONS {¢j: j € M) in H ]

consisting of eigenvectors of L; L¢j - \j¢j Vv jemn.

Define, for a fixed )\ > 0,
o 0]

O = (¢ eHn: ;E: <¢,¢j>§ o\ + \j)zr <o VY reR}
=1

i.e.
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For each r € R define an inner product <er.>. and a

seminorm l"r on § by

a

oW 1= ;_' DobPg<libpgOn + A
=]
and

bol, == <4022 5 40ed.

Let § denote the [|.] _ -completion of § and give § the

Fréchet topology induced by {|.}  : r€ R}. Letting §’
denote the strong topological dual of § we have

(i) =N o: ¢ = U @ _ with the inductive
r€R reR

limit topology.

(ii) Héll, < Néll, WV $€F and consequently .08,

¥V r«<s.

(iiidy V r € R: The canonical injection {'; :

9, > §_ is Hilbert-Schmidt for every s > r+r,.

(iv) For r > 0 §__ and §_ are in duality under the
pairing

Lo “\n‘\-' N

NN
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o = &
ni¢1 = 5/_ Nebp>_<bed>. s Ned . ded.
=]
(v) 9, = 8.
(vi) (¢j: j € B} is a complete orthogonal system
\ in ir for every r € R with ||¢j|| = () + )\:,')r
f for each j € N.
+ % "'2rl
» - + ). .
- (vii) /. (\ \J) < @
i=1
Theorem Al together with (i), (ii) and (iii) imply that §
) is a countably Hilbert nuclear space. We shall say that §
is generated by ()\I + L).
\ - The Schwartz space of all rapidly decreasing functions
S on B9 ig generated by (1/2I + L), where
x|
L = - . -See K. Ito [/o] for details.
4
= Let (0,F,P) be a complete probability space. A §’'-valued
map on 0, which is 8(J’)/F -measurable is called a §’'-
valued random variable. A §'-va1ued map Q: Ix() > §'
: where 1 R is called a (stochastic) process iff
- Qtz 0 > @’ is a §’-valued random variable for every
tel.
ot e et S et e e e e Nt T e e T T Y N R L T T e e N R RN e N
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(5]

(6]

(7]

. _.'...f.4,;.";'( ‘-"..".-":' . Y et -_- R .-_- AR o --q'.f_ <4 d'_.f\ '. -f.-' -’. v, f_ .‘_ o et e _-_'r‘_-"' .'--- ........ :i‘

3

; I IS o
-"T¢3“3w~'-“ﬂsf SRS

208

BIBLIOGRAPHY

Baker, C.R. : Range Relations Between Operators. F
Lecture Notes, Department of Statistics, University

of North Carolina at Chapell Hill, Spring 1984.

Balakrishnan, A.V. : Applied Functional Analysis.

Springer Applications of Mathematics Volume 1.

Billingsley, P. : Convergence of Probability

Measures. John Wiley and Sons, Inc. New York 1968.

Chari, R.T. : Existence, Uniqueness and Weak
Convergence of Distribution-Valued Stochastic

Differential Equations. Preprint. 1985,

Doleans-Dade, C. : On the Existence and Unicity of
Solutions to Stochastic Integral Equations.
Zeitschrift fiir Wahrscheinlichkeit und verwandte
Gebiete, 36, 1976.

Gel’fand, I.M. & Vilenkin, N. Ya. : Generalized

Functions IV. Academic Press 1964.

Hoffmann-Jgrgensen, J. & Topsge, F. :

Analytic Spaces and Their Applications. Seven

‘-‘ .....



209

Lectures Held at the London Mathematical Society
Instructional Conference on Analytic Sets. London,

1978.

[8] Holley, R. & Stroock, D. : Generalized Ornstein-
Uhlenbeck Processes and Infinite Particle Brownian

Motions. Publications RIMS 14, Kyoto University 1978.

[9) 1Ikeda, N. & Watanabe, S. : Stochastic Differential

Equations and Diffusion Processes. North Holland,

1981.

[{10] Itd, K. : Stochastic Analysis in Infinite
Dimensions. Stochastic Analysis. Friedman, M. ed.,

Academic Press.

[11] It8, K. : Continuous Additive Y-Processes.
Lecture Notes on Control and Information Sciences

# 25. Springer, 1978.
[12] Itd, K. : Distribution-valued Processes Arising
From Independent Brownian Motions. Mathematische .

Zeitschrift 182, 1983.

(13) ItSs, K. & Nisio, M. : On Stationary Solutions of a

Stochastic Differential Equation. Journal of

Mathematics of Kyoto University, 4-1, 1964.




BRI T ag™s i myty Lf g g oo TN iy 8 T 8 el iy~ il ey Yy A ing Jie S Mt e Ry iy ey g Sunl i Apveni o g g g Sl g A A

210

{14]) Kallianpur, G. & Wolpert, R.

Infinite Dimensional
Stochastic Differential Equation Models For
Spatially Distributed Neurons. Applied Mathemetics

and Optimization 12 $2, Decémber 1984.

[15) Kallianpur, G. & Wolpert, R : Weak Convergence of
Solutions to Stochastic Differential Equations with
Applications to Non-linear Neuronal Models.
Technical Report $#60, Center for Stochastic
Processes, University of North Carolina at Chapel

Hill, March 1984.

LE o« ¢ ¢ v v LY,

[16] Korezlioglu, H. & Martias, C. Stochastic

Integration for Operator Valued Processes on Hilbert
Sp&ces and on Nuclear Spaces. Technical Report #8S5,
Center for Stochastic Processes, University of North

Carolina at Chapel Hill, December 1985.

{17]) Kotelenez, P.

Law of Large Numbers and Central
Limit Theorem for Chemical Reactions with Diffusion.
Disscrtation. Forschungsschwerpunkt Dynamische
Systeme, Universit&t Bremen, Report #81, December

1982.

/ LI

{18) Kuo, H.H. : Gaussian Measures on Banach Space.

Springer Lecture Notes #463.

(19] Lindvall, T. Weak Convergence of Probability

o’

;‘..'.-.-.‘..‘..-’\-"...’.‘..--.'..‘-~.“'-..J'-----’“‘-'-‘"..-“....-‘.-“..."‘ LIPS I IR . -’-.-"'\.‘\.“- '\.“-_‘i.‘\
AR R i g R o A A e T A g S T R R A N T T, U SRR
O N Y, T G L N 2 G A L s Ly 03 2 2 A S O N O AN N




.................. e

] 211

v,

\

: Measures and Random Functions in the Function Space

i D[0,a). Journal of Applied Probability 10, 1973.

E {20] Meyer, P.A. : Probability and Potential. Paris.

P. -
M

? [21] Mitoma, I. : On the Norm Continuity of $’iva1ued ‘

Gaussian Processes. Nagoya Mathematical Journal 82,

1981.
[22] Mitoma, I. : Tightness of Probability Measures on
C({0,1}; 5’; and D([0,1}; ¥ ). Annals of

Probability 11, November 1983.

{23] Miyahara, Y. : Infinite Dimensional Fokker-Planck

Equation and Langevin Equation. Nagoya Mathematical

Journal 81, 1981.

{24] Perez-Abreu, V. : Product Stochastic Measures,

Multiple Stochastic Integrals and Their Extensions

to Nuclear Space Valued Processes. Dissertation.

. Y ¥ Y v W
Y. ..

Department of Statistins, University of North

Carolina at Chapel Hill, 1985.

{25]) Skorohod, A.V. : Integration on Hilbert Space.

Springer 1975.

[26]) Ustunel, A.S. : Stochastic Integration on Nuclear !

Spaces and 1Its Applications. Annales de 1l'Institut

e '.':’f_',' e, IR

AN 3
oy . -.’-'.(‘.'l\-(.'v':’-{‘- " o"




212

- nr

Henri Poincare, XVIII, 2, 1982.

WP e

[{27) Ustunel, A.S. : Some Applications of Stochastic
Integration in Infinite dimensions.

Stochastics, 7, 1982.

o

[{28] Ustunel, A.S. : Additive Processes on Nuclear Spaces
’ Annals of Probability 12, 1984.

N

e [29] Walsh, J.B. : A Stochastic Model of Neural Response.
i‘ Advances in Applied Probability 13, 1981.

)

A -

¥ [30) Wan, F.Y.C. & Tuckwell, H.C. : The Response of a

?

Nerve Cylinder to Spatially Distributed White Noise

Inputs. Journal of Theoretical Biology 87, 1980.

o T ) EA '.. . %
"

§ AR

a2’

R "B’ 2 b ]

} AT AR AL Lo "“" ARG, RO ACH R L CL OGN O RS S-S "‘#Q»‘j’a??‘i PRRRDRONNA NI
b '&“l“" AL ﬂ’ ‘! p,\.,;, k A:\ o A (O s A p ‘\i¢ﬁ Ah‘\




PR WA NN

A

’

—
e e e

\t

T
s s s 0 "' ek et e m

! LTSRN

DhCNCRCNEHE ALY

.

LR

Iy A ) S P Ry

11-85

DTIC

} Whe 30 PRSYARS DA TG ¥ Wiy e A i T AP A it Sty e e e vt N Ny
1o O \ NAEAN % N K

a3

P
LR % 2
b 3R S R

%

b *ﬁwt 3

Ty o AN L g ALY
A




